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Abstract

Wages vary substantially between and within cities. While wages are on average higher in larger

cities, the real earnings of low-wage workers are lower. Using French matched employer-employee

data, I document two novel facts that highlight the role of employers in shaping between- and

within-city inequality jointly. First, high-paying jobs are concentrated in large cities whereas

low-paying jobs are present throughout space. Second, the wage gains offered by large cities

materialize over time as workers reallocate from low- to high-paying jobs. I propose a spatial

framework that rationalizes these facts through two ingredients: heterogeneous employers and

frictional local labor markets with on-the-job search. Productive employers agglomerate in large

cities to hire more workers. Fiercer competition for workers arises. A higher average wage, faster

growth, and greater within-city inequality follow. I estimate the model and quantify that local

TFP gaps are minimal once I account for employers’ incentives to sort by size. The steeper

ladder of large cities implies higher lifetime real earnings for every local worker, including those

with lower real wages.
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[M]any urban dwellers suffer from extreme inequality. In a world

with high and growing levels of urbanization, the future of

inequality largely depends on what happens in cities [...].

United Nations, World Social Report 2020

Wages vary substantially across space. In urban hubs, wages are high, but so are inequalities.

There, high-income earners live alongside low-wage workers who face high costs of living. To be

concrete, Figure 1 plots the gross hourly wage distribution of each French commuting zone. The left

panel covers nominal wages, and the right panel deflates wages by a citywide housing price index.

In Paris, the average wage is 65% higher than in Lens, a mid-size city at the median of the wage

distribution. Yet, considerable heterogeneity lies beneath. In particular, low-income earners in Paris

—those in the bottom 10% of the wage distribution— earn only 2% more than low-income earners in

Lens, and 20% less once accounting for housing prices.

Figure 1 highlights that, to understand how cities shape wages, it is important to study their

inner making. However, while a vast body of research has studied wage gaps across space, little

is known as to what causes within-city inequality. What drives spatial wage inequality? Why are

wages higher but also more dispersed in larger cities? And why are some workers accepting lower

real wages there?

This paper offers answers to these questions in three parts. First, I document that employers

shape between- and within-city wage inequality jointly. Second, I provide a framework that

endogenously generates spatial wage disparities through the sorting of employers across frictional

local labor markets. Third, I quantify that spatial TFP gaps are negligible once accounting for

employer sorting, and that the net present value of lifetime real earnings is higher in larger cities

—including for workers with low present real earnings.

Specifically, in the first part of the paper, I leverage French matched employer-employee data to

document two novel facts about the importance of employers for local wages. First, I show that

high-paying jobs are concentrated in large cities while low-paying jobs are dispersed throughout

France. To quantify the relative importance of jobs net of worker heterogeneity, I estimate a mover

design à la Abowd et al. (1999) —AKM henceforth. Assuming conditional random mobility of

workers across jobs, I estimate the wage premia offered by a job via that job’s fixed effect.

I find that workers in commuting zones (CZ) twice larger earn an average wage premia 3.1%

higher —or 33.6% of the between-city wage variance. These average gaps arise from the spatial

concentration of high-paying jobs. For instance, while 17.9% of the jobs in Paris belong to the top

10% of the national job fixed effect distribution, this is only 6.9% of the jobs in Lens. By contrast,

low-paying jobs —those in bottom 10% of the national fixed effect distribution— are equally present

in both locations. As a result, larger locations are more unequal: the greater wage premia dispersion

in larger cities accounts for 33.2% of the spatial differences in within-city wage variance.

Second, I document that the wage gains offered by large cities occur over time as workers
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Figure 1: Gross hourly wage by commuting zone
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Data source: French matched employer-employee (see Section 1.1). Each dot is a commuting zone. Panel (a) displays the average wage in the
bottom 10% (orange circle) and top 10% (blue rectangle) the city wage distribution. Panel (b) displays the same statistics for real wages. Real
wages are computed as nominal wages deflated by a citywide Cobb-Douglas price index with a housing expenditure share of 0.3. Nominal and real
wages are normalized by their respective national average.

reallocate from low- to high-paying jobs. I estimate that starting wages are very similar across CZs

once I control for unobserved worker heterogeneity. For instance, the startup premia in Paris is

0.4% lower than in Lens. However, the job ladder is steeper in the French capital. I estimate the

local wage returns to job switching as the extra wage growth of job switchers relative to the wage

growth of job stayers. I find that the wage gains upon a job switch are 0.3 percentage points (p.p.)

higher in cities twice bigger (relative to a mean of 1.3%). This pattern holds within and across

occupations, throughout the wage distribution, and after controlling for heterogeneous learning

abilities across workers. As a result, wages diverge over workers’ career, and the reallocation of

workers across jobs explains 73% of the between-city wage variance net of worker heterogeneity.

These two facts underscore the key role of employers in shaping between- and within-city wage

inequality. They also provide new testable implications for frameworks that study spatial wage

disparities. Hicks neutral TFP gaps fail at generating local wage dispersion. Worker heterogeneity

cannot explain wage premia. Finally, ex-post productivity or amenity shocks do not capture the

dynamic impact of cities. In the second part of the paper, I therefore propose a new framework

that generates spatial wage inequality via employer sorting across frictional labor markets.

Workers are ex-ante homogeneous. They choose where to reside to maximize their lifetime

utility, which depends on the net present value of their expected lifetime income, housing prices,

and local amenities. Workers continuously search for better-paying opportunities in the city where

they live: they start their careers unemployed and progressively experience wage growth by climbing
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local job ladders. Employers differ in productivity and decide where to produce and hire workers.

Search frictions constrain their size. As in Burdett and Mortensen (1998), wages serve as a hiring

tool: offering higher wages allows employers to attract and retain more workers from the local

competitors.

I characterize the model analytically, which allows me to provide two new insights as to the

drivers of spatial wage inequality.

First, productive employers agglomerate in large cities to partially sidestep search frictions.

Employers’ location decision depends on three considerations: how slack is the labor market, how

intense is the local competition as captured by the wage offer distribution, and how expensive is

commercial housing. Complementarity in production between productivity and size implies that

productive employers have a stronger willingness to produce in slacker markets. In equilibrium,

markets are slacker in larger locations as housing prices price out unproductive employers. As

productive employers agglomerate there, competition intensifies, and employers offer relatively

higher wages to attain their target size.

Hiring frictions therefore generate a positive correlation between city size, employer productivity,

and local wages without Total Factor Productivity (TFP) differentials. By contrast, when labor

market are competitive, local TFPs are necessary to obtain a positive correlation between size and

wages for otherwise productive employers agglomerate in locations with cheap inputs.

The second insight is that high-paying jobs are necessarily spatially concentrated, whereas

low-paying jobs are necessarily present in every city. In the presence of monopsony power, the wage

offered by employers depend on the competition they face rather than their own productivity. The

fiercer competition in large cities requires productive employers, for which a large share of their

workforce comes from poaching competitors, to offer higher wages. High-paying jobs are therefore

concentrated in large cities as they exist only through the fierce local competition. By contrast,

employers who hire most of their workforce from unemployment offer a wage close to unemployed’s

outside option. The wages at the bottom of the local ladders are independent of the local employer

composition, and low-paying jobs exist in every city.

Altogether, the concentration of productive employers in large cities puts upward pressure on

wages and local inequalities. The local job ladder steepens, job switching yields higher wage gains,

and workers there initially accept lower real-paid jobs in anticipation of higher future real earnings.

Given these new insights, in the third part of the paper, I estimate a quantitative version of the

model to re-assess the drivers of spatial wage disparities.

I extend the model in three ways. First, I allow cities to differ in Total Factor Productivity.

High wages may then result from the agglomeration of productive employers or high TFP. Second,

employers face flexible curvature in job creation cost functions that let them grow without raising

wages too rapidly. They also face idiosyncratic entry costs to capture unobserved heterogeneity

in location choice. Third, I add two additional reasons for why workers may work at lower real

earnings in large cities: idiosyncratic preferences, and migration costs. The model is estimated on
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the AKM job fixed effects, which allows me to abstract from worker heterogeneity.

I provide a proof of identification for 16 of the 20 parameters by combining the strategy used

in quantitative spatial models (Redding and Rossi-Hansberg, 2017) and wage-posting settings

(Bontemps et al., 2000). The key part of the estimation consists of separately identifying the four

channels shaping employer sorting: city size, search frictions, the dispersion in entry costs, and

local TFPs. City sizes are readily observable. Search frictions are identified off workers flows in-

and out- of employment and across employers. The dispersion in entry costs is estimated from the

sensitivity of employers’ location choice to local profit opportunities, where profits are computed

from firm-level data on location, size, and wages, together with the structure of the model. Finally,

TFPs are recovered as residuals to match each location’s average wage premia.

I find that the average gap in wage premia across CZs are entirely explained by employer sorting.

My estimates of search frictions and entry costs dispersion align with those in the literature. Given

these, productive employers have strong incentives to locate in large cities to maximize their size.

This productivity selection, once interacted with the local competition for workers, suffices to explain

why wage premia are on average higher in bigger places. Quantitatively, local TFPs account for

3.2% of the between-city wage premia variance.

The estimation procedure targets the aggregate wage premia variance and the local average

premia. It targets neither how within-city inequality varies across space, nor how steep are the local

job ladders. I therefore use the two novel facts documented in this paper as over-identification tests

to validate the importance of employers for spatial wage disparities.

Testing first the model’s prediction on within-city inequality, I find that the spatial concentration

of productive employers does generate greater wage premia dispersion in bigger places. As in the

data, low-paying jobs are dispersed throughout space, and as a result, low-wage workers earn the

same wage everywhere. By contrast, high-paying jobs are concentrated in large cities, and there are

large spatial variation in the right tail of the wage premia distributions.

Wage inequalities are greater in bigger locations as workers do not benefit equally from the fiercer

local competition. Every employer in Paris is relatively more productive than in Lens. For instance,

while workers in the bottom 10% of the wage distribution in Paris earn wages 3.2% higher than their

counterparts in Lens, their employers’ productivity is 11.9% greater. This productivity gap is not

passed through onto workers as employers in both locations hire their workforce from unemployment.

By contrast, workers at the top of the Paris’ ladder extract more rents than any other workers

because their employers compete locally with firms who are relatively more productivity. For

instance, employers in the top 10% of the Paris’ wage distribution charge markdown 19.3% higher

than similar employers in other cities. Combined, I quantify that within-city inequality would be

lower in larger cities were markdowns uniform across space.

Turning to the second over-identification exercise, I find that workers in larger cities enjoy higher

lifetime real earnings, including those who earn lower real wages. The steeper job ladder in larger

cities generates wage growth gains consistent with my estimated local returns to job switching. The
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faster growth spurs higher lifetime income. For instance, the net present value of new entrants’ real

lifetime earnings is 4.2% higher in Paris than in Lens —despite the fact that their real earnings are

8.1% lower. Generalizing to all locations, I quantify that new entrants in cities twice larger earn

lifetime real earnings 1% higher.

The reallocation of workers across jobs, and the wage growth it begets, are thus key to the

spatial distribution of economic activity. I conclude the paper with a counterfactual that simulates

a decline in the average job switching rate by 1 p.p. through a national increase in search frictions.

A slower reallocation across employers depresses workers’ expected lifetime income, and dis-

proportionally so in large cities. Holding constant the spatial allocation of jobs, the extra lifetime

earnings offered by Paris drops by 1.3 p.p., and as a result, the number of workers there shrinks by

12.7%. The consequences of stronger frictions on local productivity are a priori more ambiguous.

On the one hand, unproductive employers can retain a greater share of their workers in large cities.

On the other other hand, productive employers value relatively more the slackness of these places as

it is costlier to poach workers from the competition. In net, the average productivity in Paris reduces

from 18.9% to 14.7%, further depressing the earnings offered by large locations. In equilibrium,

Paris’ size shrinks by 22.2% as the expected lifetime earnings are 2.9 p.p lower than in the baseline

equilibrium, highlighting the importance of considering the interactions between the local ladders

and employers’ spatial allocation.

Related literature This paper relates to several strands of literature. The first studies spatial

wage inequality. A vast body of research, started by Marshall (1890), and then followed — amongst

many others — by Glaeser and Maré (2001), Combes et al. (2008), Bacolod et al. (2009), Moretti

(2011), and Moretti and Yi (2024), analyzes wage gaps across locations. Particularly related are

Card et al. (2025) and Carry et al. (2025) who both document the importance of employers for

between-city inequality. Motivated by the evidence that between-city inequality explains at most

20% of the aggregate wage variance, Glaeser et al. (2009), Baum-Snow and Pavan (2013), Eeckhout

et al. (2014), Baum-Snow et al. (2018), and Papageorgiou (2022) analyze wage inequality within

cities, primarily focusing on worker heterogeneity. I tie these two literature together by showing

that the concentration of high-paying employers in large cities generate higher wages and greater

local inequality.

Second, this paper contributes to the literature on the dynamic effects of cities on wages (Baum-

Snow and Pavan, 2012; Roca and Puga, 2017; Porcher et al., 2023; Eckert et al., 2022; Lhuillier,

2023). Similar to Roca and Puga (2017), I estimate that starting wages are similar across locations

once accounting for worker heterogeneity. However, whereas previous studies emphasize human

capital accumulation, I document that the bulk of the faster wage growth in large cities occur from

workers reallocating from low- to high-paying employers.

I microfound the existence of local job ladders by incorporating search frictions and on-the-job

search into a quantitative spatial model, as in Schmutz and Sidibé (2019), Martellini (2022), and
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Heise and Porzio (2022). I contribute to these papers by allowing heterogeneous employers to sort

across local labor markets, which I show is central to explain the steeper job ladder in larger cities.

Lindenlaub et al. (2022) also develop a framework in which employers sort across frictional labor

markets where workers search off- and on-the-job. Our papers complement each other: they study

the impact sorting has on local labor shares whereas I analyze its impact on wage inequality.

Several other papers have emphasized the importance of firm sorting for spatial disparities,

including Combes et al. (2012), Behrens et al. (2014), Gaubert (2018), Bilal (2023), Hong (2024),

Franco (2024), and Kleinman (2024). In these frameworks, productive firms concentrate in large

cities to benefit from high local productivity. By contrast, as in Oh (2023), I quantify that employer

sorting is mainly driven by city size as it enables employers to mitigate search frictions.

Finally, this paper connects to the literature on search frictions and monopsony power (Burdett

and Mortensen, 1998; Bontemps et al., 2000; Engbom and Moser, 2022; Bilal and Lhuillier, 2021;

Jarosch et al., 2024; Berger et al., 2022; Lamadon et al., 2022; Gouin-Bonenfant, 2022; Morchio

and Moser, 2024). I contribute to it by showing that the sorting of employers across labor markets

shapes the rent-sharing process, reduces employers’ market power in larger cities, and generates

greater local inequality.

The rest of this paper is organized as follows. Section 1 presents the data and the two novel facts.

Second 2 develops the novel theoretical framework. Second 3 lays out the quantitative extensions of

the model and its structural estimation. Second 4 concludes by quantifying the consequences of

employer sorting for spatial wage disparities.

1 Two facts about spatial wage inequality

1.1 Data

I use employer tax records from France (Déclaration Annuelle de Données Sociales, DADS)

between 2008 and 2019. This dataset comes in two formats. The first is a 4% representative panel

that tracks the entire history of individuals in the labor market (DADS panel). The second is a

repeated cross-section covering the universe of employed workers (DADS salariés). Both datasets

provide information on workers’ earnings, the number of hours worked, the establishment where they

are employed and their occupation, the location where they work and live, along with demographic

information.

This dataset has two advantages. First, its panel structure allows to track workers throughout

their careers. Second, its large sample size guarantees sufficient statistical power to precisely estimate

statistics at relatively granular geographical units.

I apply the same sample restrictions to both datasets. I focus my analysis on full-time employed

workers between 25 and 55 years old. Workers employed in the public sector have their wages

determined nationally by their tenure rather than based on their productivity or the local competi-
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tiveness of the labor market. I therefore keep in the sample workers employed in the private sector,

and I exclude the education and health industries due to their large fraction of public servants.

I abstract from the labor supply decision and use the gross hourly wage as my measure of labor

income. I deflate wages by the aggregate consumption price index and express them in 2018 euros.

Appendix A.1 provides more details on the construction of the sample.

I define a job as an establishment × 4-digit occupation, and a city as a commuting zone. A

commuting zone is a statistical area defined by the French statistical agency (INSEE). It consists of

a collection of contingent municipalities clustered together to reduce the commuting flows across

them. Commuting zones are thus the natural geographical unit when thinking of local labor markets.

There are 297 such areas in metropolitan France, with an average size of 31,823 employed workers.

I use the terms commuting zones, cities, and locations interchangeably for the rest of the paper.

For computational feasibility and statistical accuracy, I group cities according to their average

wage. Specifically, I construct ten population-weighted deciles of average wages. The first decile

contains 100 cities, Lens is in third group, and the tenth decile is composed of Paris and Saclay,

the South-West suburb of Paris. Table A.1 provides summary statistics on each of the city cluster.

This clustering accounts for 97% of the variation in average wage and wage variance across CZs.

1.2 Spatial wage inequality in France

Figure 1 displays the extent to which wages vary across cities in France. Panel (a) plots the average

wage in the bottom 10% (orange circles) and top 10% (blue rectangles) of the city wage distribution

against the unconditional average wage.

Two patterns stand out. First, there are large average wage differences across CZs. The average

wage in Paris is 65% higher than in Lens, the median city in the wage distribution. High-wage cities

tend to be larger: workers in cities twice larger earn on average wages 8.3% higher. Decomposing

the aggregate wage variance into a between- and within-city component,

Var[logw] = Var[E(logw)]︸ ︷︷ ︸
Between-city

+E[Var(logw)]︸ ︷︷ ︸
Within-city

,

I find that spatial variation in average wages account for 10% of the total wage variance.

Second, within-city inequalities are far from homogeneous across locations. For instance, the

standard deviation of log wages in Paris is 0.56, 58% higher than in Lens. For comparison, the

standard deviation of log wages is 0.63 in the United States and 0.44 in France, countries that are

often associated with high and low inequality.1

Large spatial variations in the wages of high-paid workers drive the differences in within-city

inequality. Workers in the top 10% of the wage distribution in Paris earn wages 87% higher than

workers at the top in Lens. By contrast, low-wage workers earn similar wages everywhere.

1Figure A.2 reproduces Figure 1 in the United States using data from the American Community Survey.

7



Figure 1b repeats the exercise with real wages. Real wages are computed as nominal wages

deflated by a citywide Cobb-Douglas price index with a housing expenditure share of 0.3.2

Figure 1b shows that low-wage workers earn lower real earnings in larger cities. The higher

housing prices indeed more than offset the moderately higher nominal wages. For instance, workers in

the bottom 10% of the wage distribution in Paris earn real wages 20% lower than their counterparts

in Lens. Figure A.1 extends the analysis to all the deciles of the local wage distributions; on average,

workers in the bottom 40% of their local wage distribution earn lower real wages in larger places.

A similar pattern holds when housing prices are adjusted to take into account the heterogeneous

exposure of workers across neighborhoods. It also holds amongst workers not born in the city, i.e.,

those who explicitly choose to live there.

Wages therefore vary substantially across space. Wages are on average higher in larger cities,

but they are also more dispersed. I now show that employers are instrumental in shaping between-

and within-city inequality jointly.

1.3 Fact #1: high-paying jobs are spatially concentrated whereas low-paying jobs are dispersed

I estimate how employers shape spatial wage inequality via a two-way fixed effect model à la

Abowd et al. (1999) —AKM henceforth. Specifically, I estimate

logwit = αAKM
i + βAKM

ℓ(i,t) xit + γAKM
j(i,t) + εAKM

it , (1)

where i is a worker, t is quarter-year, xit denotes the number of years worked (i.e., experience), and

ℓ(i, t) and j(i, t) are indices for the city group and job where i is employed at time t. The worker

fixed effects αAKM
i control for time-invariant worker characteristics (e.g., education, gender) and

other unobserved abilities. The parameters {βAKM
ℓ }Lℓ=1 summarize the impact of experience on

wages, allowing cities to offer differential returns to experience. I define the contribution of workers

on wages as the sum of the static and dynamic components: ψAKM
it ≡ αAKM

i + βAKM
ℓ(i,t) xit. Finally,

γAKM
j are job fixed effects.

Workers who move between jobs identify the job fixed effects if the mobility of workers is random

conditionally on these workers and their current jobs, E[εAKM
it | i, {ℓ(i, k), j(i, k), xik}k] = 0 (Card

et al., 2013). In this case, the fixed effects measure job wage premia —the additional wage a worker

earns when working at a particular job.3 Across space, the levels of the job fixed effects are identified

from workers switching jobs across locations.

To limit well-known econometric difficulties linked to limited mobility bias, I follow Bonhomme

et al. (2019) and group workers and jobs in 100 equally populated clusters based on their unconditional

2There does not exist a publicly available price index at the commuting zone level in France. See Section 3.2 for
details on the housing data.

3The conditional random mobility assumption is trivially satisfied in the model I develop in Section 2. In addition,
AKM models are usually estimated at the firm level. The identifying assumption behind (1) is thus relatively weaker
as it allows for the mobility patterns to vary across establishments and occupations.
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Figure 2: The role of employers in between-city wage inequality

(a) Average wage premia
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Left panel displays the average job fixed effect per city group against the average city size in each group. Right panel
displays the between-city wage decomposition (2) normalizing the average wage in the smallest location to zero. The
blue area plots the contribution of jobs, Eℓ[γj(i,t)]. The orange area plots the contribution of workers, Eℓ[ψit]. In both
panels, the fixed effects are obtained from (1).

mean wage.4 I then estimate equation (1) by OLS at the group level.

I use the estimated job fixed effects to quantify the role of employers on between- and within-city

wage inequality.

Starting with the between-city component, I find that larger locations offer higher wage premia

on average. Figure 2a plots the average job fixed effect within each city group against the average

city size in each group. I estimate that workers in cities twice as large earn an average premium

3.1% higher.

The higher premia in large cities account for a sizeable fraction of why wages are higher there.

Using (1), I break down the average wage in each location into components due to worker and job

heterogeneity:

Eℓ[logwit] = Eℓ[ψAKM
it ]︸ ︷︷ ︸

Worker

+Eℓ[γAKM
j(i,t) ]︸ ︷︷ ︸

Job

. (2)

Figure 2b implements this decomposition. Each marker represents a city group. The blue and

orange areas represent the average job and worker fixed effects in each city cluster, projected against

the local average wage. Each component is expressed relative to the smallest location. I find that

4The grouping for jobs is done within city groups to preserve the local nature of an establishment. The results are
virtually identical when varying the number of clusters between 10 and 200.
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Figure 3: The role of employers in within-city wage inequality

(a) Job shares of low- and high-paying jobs
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Left panel displays the employment share of low-paying (orange circles) and high-paying (blue rectangles) jobs in
each city cluster. Low-paying (high-paying) jobs are defined as jobs with a fixed effect in the bottom 10% (top 10%)
of the national job fixed effect distribution. Right panel displays the within-city wage decomposition (3). The blue
area plots the contribution of jobs, Varℓ[γit] + Covℓ[ψit, γj(i,t)]. The orange area plots the contribution of workers,
Varℓ[ψit] +Covℓ[ψit, γj(i,t)]. The grey area plots the residuals, Varℓ[εit]. In both panels, the fixed effects are obtained
from (1).

the gap in average wage premium across CZs explains 33.6% of the between-city wage variance.

The patterns and magnitudes documented in Figure 2 are similar to Combes et al. (2008) in

France and Card et al. (2025) in the United States, and more generally, aligns with benchmark

empirical estimates of the benefits of agglomeration for workers (e.g., Combes and Gobillon, 2015;

Duranton and Puga, 2020). However, in contrast to standard estimates, the wage benefits offered

by large cities are here explicitly tied to job premia. To the extent that there is more than one job

per city, the spatial allocation of job premia then also matters for within-city inequality.

Figure 3a displays the spatial distribution of low- and high-paying jobs. Specifically, I identify

in the data jobs whose fixed effect is in the bottom (low-paying) and top (high-paying) 10% of the

unweighted national job fixed effect distribution. I then compute the fraction of jobs in each city

that are either low- or high-paying. Figure A.4 extends the analysis to all the deciles of the job fixed

effect distribution, and Figure A.3 repeats the exercise weighting the statistics by employment.5

The spatial allocation of jobs is strikingly different for low- and high-paying jobs. While low-

paying jobs are uniformly allocated across space, high-paying jobs are disproportionally present in

5Job shares are the relevant statistics to study the spatial allocation of jobs. However, wage statistics rely on jobs’
employment shares. The two statistics are virtually identical for low-paying jobs. High-paying jobs hire relatively
more (fewer) workers in larger (smaller) cities, thus amplifying their importance for between- and within-city wage
inequality.
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the largest cities. For instance, 17.9% of jobs in Paris are high-paying, whereas this is 6.9% of them

in Lens.

The spatial concentration of high-paying jobs rationalizes why large cities offer higher wage

premia on average.6 At the same time, it also implies greater within-city inequality as low-paying

jobs are present throughout France. Using (1), I decompose the within-city wage variance into

components due to worker heterogeneity, pay premia dispersion, and the residuals:

Varℓ[logwit] = Varℓ[ψAKM
it ] + Covℓ[ψAKM

it , γAKM
j(i,t) ]︸ ︷︷ ︸

Worker

+

Varℓ[γAKM
it ] + Covℓ[ψAKM

it , γAKM
j(i,t) ]︸ ︷︷ ︸

Jobs

+Varℓ[εit]︸ ︷︷ ︸
Residuals

.
(3)

Figure 3b displays the variance decomposition. The blue, orange, and grey area depicts the location-

specific dispersion in job fixed effects, workers fixed effects, and residuals, projected against the city

wage variance.7

Figure 3b shows that the spatial distribution of jobs is key to understand why larger cities are

more unequal. For instance, the dispersion in pay premia in Paris is 0.06 larger than in Lens, or

35% of the difference in wage variance. Generalizing to all cities, the job fixed effects explain 33%

of the spatial variation in within-city wage inequality. Meanwhile, worker heterogeneity and the

residuals account for 57% and 10%.

Figure 2 and Figure 3 thus document the importance of jobs in shaping between- and within-city

inequality. Appendix A.4 assesses the robustness of these findings through two exercises.

First, I quantify separately the role of establishments, occupations, and industries. The baseline

specification (1) is implemented at the job (establishment × occupation) level. Given that I control

for time-invariant unobserved worker heterogeneity and location-specific returns to experience, I

indeed interpret pay differences between occupations for seemingly identical workers as pay premia.

However, these may also capture time-varying unobserved skills or compensating differentials. I

separate the role of occupations and industries from that of establishments by projecting the job

fixed effects onto occupation, industry and establishment fixed effects:

ψAKM
j = δAKM

o(j) + ϕAKM
ι(j) + ψAKM

f(j) + νj . (4)

In the above, o(j), ι(j), and f(j) refer to the occupation, industry and establishment of job j. I

estimate (4) by weighted OLS where the weights are the employment shares of each job.

Figure A.6 uses (4) to decompose the relative importance of establishment, industry, and

6Figure A.5 plots counterfactual average job fixed effects when only the bottom xth percentile of the national
fixed effect distribution are included. Figure A.5 shows that the concentration of the top 20% highest paying job in
the largest cities account for 73.2% of the between-city dispersion in average wage premium.

7The level of the worker and job fixed effects are not separately identified, which is why the between-city
decomposition in Figure 2 is normalized to the smallest location. By contrast, the level of the variances in (3) is
identified.
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occupation on between- and within-city wage inequality. Industries explain very little of it. If

anything, the industries present in the largest locations pay on average slightly lower wages after

accounting for occupation and establishment heterogeneity. The small role played by industries

suggest that compensating differentials are not the core force driving Figure 2 and Figure 3.

Occupations do matter for the spatial distribution of job wage premia, but relatively less than

establishments. High-paying occupations are relatively more present in larger cities, which explains

44.2% of the between-city wage premia variance. At the same time, some low-paying occupations

are present throughout France, and occupations account for 26.1% of the spatial differences in

within-city wage premia dispersion. The establishments fixed effects account for the remainder:

58.1% of the between-city dispersion and 73.9% of the within-city dispersion in job fixed effects. As

such, employers still explain a sizeable portion of spatial wage inequality even if wage gaps across

occupations fully capture productivity differentials.

The second robustness exercise shows that the sorting of high-wage workers into high-wage jobs

does not explain why larger cities are more unequal. The within-city variance decomposition (3)

bundles the job fixed effect variance with the covariance between the worker and job fixed effects. I

do so because, everything else equal, the covariance is an increasing function of job heterogeneity. In

Section A.2, I provide a first-order approximation of the within-city wage variance that isolates the

impact of sorting as measured by the correlation between worker and job fixed effects. Figure A.7

implements this approximation. I find the correlation between the job and worker fixed effects to

be stable across CZs. As such, while this sorting component explains a non-trivial amount of the

aggregate wage variance, it does not rationalize the greater wage inequality in larger cities.

Workers in large cities thus earn higher wages because they have access to higher-paying jobs.

However, large cities do not benefit all workers equally as low-paying jobs are present throughout

France. Greater within-city inequality follows. I now show that the wage gains offered by large

cities occur over time as workers reallocate from low- to high-paying jobs.

1.4 Fact #2: the job ladder is steeper in larger cities

To motivate the analysis, Figure 4a presents cross-sectional evidence on how the reallocation of

workers across jobs interact with their wage profile. It depicts for two cities, Paris and Lens, the

average wage as a function of the number of jobs an individual has worked at. The number of jobs

held by worker i at time t is defined as the cumulative sum of job switches between age 25 and t:

#Jit =

t∑
τ=ti

J2Jiτ . (5)
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A worker is said to switch jobs (J2Jit = 1) if they transition between pairs of establishments ×
occupations within 90 days. In (5), ti denotes the year in which worker i was 25.8

Figure 4a documents a rising wage gap between Paris and Lens as workers move along the job

ladder. While this gap is 28.9% for workers who enter the labor force, it rises to 88.7% after 9 job

switches.

Three distinct forces may shape the wage profiles shown in Figure 4a. First, heterogeneous

workers may sort across locations, and may do so differently across their lifecycle. Second, workers

which have occupied more jobs tend to be more experienced, and experience may be remunerated

differentially throughout space. Third, the job ladder may be steeper in Paris.

I estimate the local impact of job switching on wages net of sorting and learning through the

reduced form model

logwit = αJL
i + βJLℓ(i,t)xit + δJLℓ(i,t) + λJLℓ(i,t)#Jit + εJLit . (6)

As in (1), αJL
i are worker fixed effects which control for the sorting of workers across space. The

variable xit is the experience of i at time t, and βJLℓ captures that some cities may favor human

capital accumulation. The parameters δJLℓ(i,t) are location fixed effects. Finally, #Jit is the cumulative

sum of job switches as defined in (5). To ensure that I am not misclassifying transitions through

unemployment as job switches, I also estimate a version of (6) where I restrict #Jit to job transitions

associated with wage gains.

There are two coefficients of interest in (6). First, the local returns to job switching as estimated

by λJLℓ . Given the worker fixed effects and the city-specific returns to experience, λJLℓ is identified

from the wage growth of job switchers relative to the wage growth of job stayers. Identification then

relies on random worker mobility across jobs conditional on workers’ unobserved characteristics

and experience.9 If λJLℓ > 0, job switching spurs faster wage growth. If λJLℓ′ > λJLℓ , this extra wage

growth is greater in ℓ′ than ℓ, suggesting a steeper local job ladder.10

The second parameters of interest are the location fixed effects δJLℓ . These fixed effects measure

the average wage in location ℓ, net of worker heterogeneity and before any job switch or experience.

They therefore quantify the extra wage earned in location ℓ for seemingly identical workers upon

entry in the labor market —the local startup premium.

Together, these two sets of parameters provide a complete picture of how jobs shape wages

throughout space and time. Workers may earn high wages in large cities thanks to a high start-up

8For workers that I observe for the first time after age 25, I infer their prior number of switches based on their age.
I estimate J2Jit = αt + βai + uit, where ai is the age of i. I then use the estimated age profile to infer workers’ past
number of switches: #Jiti =

∑ti
τ=ti

J2Jiτ =
∑
a≤aiti

βa, where ti is the first year in which I observe i.
9The identification assumption is thus stricter than for the AKM model (1). However, (6) does not suffer from the

limited mobility bias, which allows for further heterogeneity analysis. The two approach are therefore complementarity.
Figure A.11 re-estimate (6) replacing the left-hand side variable with the job fixed effects of Section 1.3. The
between-city differences in returns to job switching are very similar when estimated on wages or job fixed effects.

10The local returns to experience are in turn identified from the wage growth of job stayers. Consistent with the
prior literature, I find that they are higher in larger cities (Figure A.8).

13



Figure 4: The local returns to job switching
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Panel (a) plots the average hourly wage by number of jobs held, in blue for Paris and in orange for Lens. The
number of jobs held are defined in (5). Panel (b) plots the point estimates for the local return to job switching,
{λJLℓ }Lℓ=1. Panel (c) plots the location fixed effects, {δJLℓ }Lℓ=1, normalized to zero. Both sets of estimates are plotted
against the average city size in each city cluster. The vertical bars in (c) and (d) represent 95th confidence intervals
with standard errors clustered at the individual level. Panel (d) decomposes the lifecycle wage profile between Paris
and Lens according to (7). The orange area represents the difference in location fixed effects, ∆ℓδ

JL
ℓ . The blue

area represents the contribution of job switching, ∆ℓλ
JL
ℓ Eℓ[#Jit | a]. The grey area represents the contribution of

experience, ∆ℓβ
JL
ℓ Eℓ[xit | a]. The point estimates used in (b), (c), and (d) are obtained form (6).
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premium. Alternatively, they may access those high-wage opportunities over time as they reallocate

across jobs.

Figure 4b presents the estimated returns to job switching by city cluster. Figure 4c displays the

local startup premia. Both estimates are plotted against the average city size in each city cluster.

I find that job switching fastens wage growth throughout France, and even more so in larger

places. On average, a job switch leads to an extra 1.3% wage increase. In Paris, these wage gains

are 2.4%, whereas they are 0.9% in Lens. Generalizing to all cities, workers gain an additional

0.3 p.p. upon switching jobs in cities twice larger. The spatial differences in job ladder steepness

are even greater when focusing on job switches associated with wage gains (0.5 p.p.) as shown in

Figure A.11b.

By contrast, I estimate a negligible startup premium in large cities. For instance, entry-level

wages in Paris are 0.4% lower than in Lens after controlling for worker heterogeneity and the

dynamic effects of cities. Doubling the size of a city in the cross-section is associated with a 0.1%

decrease in the startup premium, with a p-value of 0.52.

Table A.2 in Appendix A.3 provides several robustness exercises. For expositional clarity, I

replace the non-parametric local returns to job switches in (6) with an interaction between job

switching and city size. Column (1) reports the baseline estimates from this modified specification

for all job switches and column (2) for job switches associated with wage gains. Column (3) includes

year-by-location fixed effects to control for location-specific wage trends. Column (4) and (5) address

the concerns that human capital accumulation may not be fully captured by experience; then,

the wage growth of movers may confound the gains from reallocation with learning. Specifically,

column (4) includes occupation fixed effects, thereby identifying returns to job switching from moves

between establishments within occupations. Column (5) introduces worker-specific experience slope

to account for heterogeneity in learning abilities. In all cases, job switching brings faster wage

growth in larger cities, and the estimates are very stable throughout.

Do the gains from reallocation occur only to a subset of workers? Figure A.9 and A.10 address

this question by conducting heterogeneity analysis. Figure A.9 estimates the local returns to job

switching by occupation. I find that the job ladder of large cities is steeper for every occupation,

including for blue-collar workers. Figure A.10 reports estimates by wage quartile. Here as well, I

find that workers at every rank of the wage distribution experience larger wage gains when they

switch job in bigger cities. The steeper job ladder of larger cities has sizable consequences on

lifetime earnings. According to equation (6), the lifecycle wage profile in location ℓ net of worker

heterogeneity is

Eℓ[logwit − αJL
i | a] = δJLℓ + βJLℓ Eℓ[xit | a] + λJLℓ Eℓ [#Jit | a] , (7)

where a is a particular age.

Figure 4d uses (7) to decompose the difference in lifecycle wage profile between Paris and Lens.
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Given the small estimates of the startup premium, there is virtually no wage discrepancy at entry

in the labor market. The wage gap widens as workers reallocate across employers over time. By age

55, the steeper job ladder in Paris implies that workers earn wages 14.1% greater than in Lens. The

higher returns to experience further boosts the wage gap by 6.2 p.p.

Figure A.12 generalizes this decomposition to all locations. Over time, the steeper ladder in larger

cities explains 69.8% of the between-city wage growth variance (Figure A.12b).11 The remainder

is due to experience. Averaging across the lifecycle, the reallocation of workers to better-paying

jobs explain the majority (73%) of the between-city wage variance net of worker heterogeneity

(Figure A.12a). By contrast, the startup premia accounts for none.

1.5 Summary of testable implications

Sections 1.3 and 1.4 document the importance of employers for spatial wage inequality through

two novel facts. First, high-paying jobs are concentrated in large cities whereas low-paying jobs

are present everywhere. Second, workers tend to start their careers at these low-paying jobs, and

large cities boost wages as workers reallocate across employers. Together, employers generate higher

wages and greater inequality in larger cities.

These two facts constitute testable implications against which we can benchmark existing theories

of spatial wage disparities. First, TFP gaps would fail at generating within-city wage dispersion.

Second, to the extent that (1) and (6) control for unobserved worker heterogeneity and the effects

of cities on learning, worker sorting cannot account for them. Third, ex-post productivity shocks or

compensating differentials would not explain the steeper job ladder of larger locations.

In the next section, I thus build a new theory of spatial wage disparities that jointly account for

the two facts through the sorting of employers across frictional labor markets.

2 A spatial theory of wage premia

The framework combines search frictions as in Burdett and Mortensen (1998) with an otherwise

standard quantitative spatial model (Redding and Rossi-Hansberg, 2017). I concentrate here on

the model’s core feature and characterize the equilibrium analytically. Section 3 extends the model

quantitatively.

2.1 Setup

The economy is comprised of two types of agents. There is a unit mass of ex-ante homogeneous

workers and a mass M ≤ 1 of heterogeneous employers. Workers and employers meet within

11As made clear by (7), the job ladder of large cities may boost wages by generating greater wage gains upon a
switch (λJL

ℓ ) as well as more frequent switches (Eℓ[#Jit]). Figure A.12b separates both channels. I find that the
greater gains upon a switch drive most (88.2%) of the impact of local ladders on wage growth.
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L locations. Time is continuous. There is no aggregate shock, and I focus on the steady state

equilibrium.

Cities Cities are indexed by ℓ with ℓ ∈ {1, 2, . . . , L}. They offer amenities Aℓ to the workers

that reside there. Cities differ in no other way ex-ante. I therefore order cities by their amenities:

A1 < A2 < · · · < AL. I later allow for TFP differentials. Focusing initially on amenities highlights

how employer sorting endogenously creates wage differences across cities.

Workers Workers are risk neutral, infinitely lived, and discount the future at rate ρ. They

consume a freely traded good taken as the numéraire and local housing according to Cobb-Douglas

preferences. Their lifetime utility is

E0

[∫ ∞

0
e−ρt

(
ht
α

)α( ct
1− α

)1−α
dt

]
,

where α is the expenditure share on housing. The expectation is taken over future labor income.

Workers do not have access to a savings device: if they reside in location ℓ and earn labor income

yt, they face the per-period budget constraint pℓht + ct ≤ yt.

Unemployed workers earn unemployment insurance b, which can alternatively be interpreted as

revenue from home production. They receive job offers at Poisson rate λu. When employed, workers

supply inelastically one unit of labor, so their income equals their wage. They also receive job offers

at Poisson rate λe and fall back into unemployment at rate δ. I assume for now that the contact

rates are exogenous and constant across space, with δ < λe ≤ λu.12

Job offers are drawn from the local job offer distribution Fℓ. That is, workers only search for

jobs in the city where they live.13 Workers are free to migrate across cities, but jobs are tied to

a location. Accordingly, if a worker wants to switch locations, they must quit their job. These

assumptions, while strong, are broadly consistent with the data: most job switches occur within

cities, and workers who move between them experience longer non-employment spells (Table A.3).

The allocation of workers across space is characterized by the triplet {mℓ, eℓ, uℓ}Lℓ=1, which

denote the measures of total, employed, and unemployed workers in each location. Feasibility

demands
∑L

ℓ=1mℓ = 1.

Employers Employers are infinitely lived and discount the future at rate λ. They produce

the numéraire of the economy. They are ex-ante heterogeneous, indexed by their time-invariant

productivity z. The aggregate distribution of productivity is Γ with support [z, z̄], z̄ ≤ ∞. I assume

that Γ admits a finite and continuous density. The production — and revenues — generated by an

employer with productivity z when they hire n workers is R(z, n) = zn. Given constant returns

to scale, z is also the marginal product of labor (MPL) of a job at this employer. As such, I use

12Figure C.17 shows that job switching rates are fairly constant across cities once controlling for worker heterogeneity.
13For a quantitative spatial model with wage posting and between-city search, see Heise and Porzio (2022).
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employers and jobs interchangeably.14 I assume that z is high enough relative to b so that all jobs

are profitable in at least one city.

Employers hire workers in local frictional labor markets. The hiring process follows Burdett

and Mortensen (1998). Employers have monopsony power over workers and are assumed to be

atomistic. They post a single wage offer. They commit to a fixed and non-state-contingent wage

that cannot be renegotiated throughout the employment spell. In particular, employers cannot

make counteroffers when their workers receive alternative job opportunities. Rather, given their

target size, they optimally set their wage offer ex ante to maximize hiring.

Employers freely choose the city where they want to produce and hire workers. They pay unit

housing cost rℓ to locate in city ℓ. The endogenous distribution of jobs across space is summarized

by two objects: the mass of employers in each city, Mℓ, and the local distribution of productivity,

dΓℓ.
15 The allocation {Mℓ, dΓℓ}Lℓ=1 is feasible if the number of jobs present throughout the economy

is not greater than the total number of jobs available:

L∑
ℓ=1

MℓdΓℓ(z) ≤MdΓ(z). (8)

Housing markets The residential and commercial housing markets are segmented. In each of

them, absentee land owners supply the local housing stocks. The residential housing supply is given

by Lℓ = L̄pθℓ , where θ is the residential housing supply elasticity. Likewise, the commercial housing

supply is given by Hℓ = H̄rϕℓ for ϕ the commercial housing supply elasticity.

I characterize the steady state in three steps. First, I derive the spatial allocation of workers

and the local labor supply curves. I then solve for the local wage distributions given the spatial

allocation of employers. Finally, I characterize the spatial allocation of employers.

2.2 Job search

The local labor supply curves follow from the job-switching behavior of workers together with

their choice of location. Let Uℓ denote the lifetime utility of an unemployed worker in location ℓ.

This value satisfies the HJB equation

ρUℓ =
Aℓb

Pℓ
+ λu

∫
max{Vℓ(w)− Uℓ, 0}dFℓ(w), (9)

where Pℓ ≡ pαℓ is the price index in location ℓ. The lifetime utility of unemployed workers in city ℓ

consists of their contemporaneous real earnings adjusted for local amenities, and the expected value

from future job opportunities. Unemployed workers choose their location to maximize their lifetime

14The framework does not model explicitly occupation. Rather, the productivity z captures the total productivity
of the pair occupation × establishment.

15Ultimately, the spatial allocation of employers is summarized by the measure of each job MℓdΓℓ(z). Separating
the two is useful to characterize sequentially the solution to the employer problem.
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utility:

Ū = max
ℓ
Uℓ. (10)

In equilibrium, unemployed workers are indifferent as to where to live.

By contrast, employed workers cannot move freely across locations. The lifetime utility of a

worker employed at wage w in location ℓ satisfies

ρVℓ(w) =
Aℓw

Pℓ
+ λe

∫
max{Vℓ(w′)− Vℓ(w), 0}dFℓ(w′) + δ[U − Vℓ(w)], (11)

which also accounts for the utility loss associated with falling back into unemployment.

Within a city, employed workers behave as income maximizers. Their utility is increasing with

their wage; as a result, they climb the local ladder by continuously accepting better-paying job

offers. The flows of workers up the job ladder determine the number of employees at each wage.

In particular, the distribution of wages amongst employed workers is related to the wage offer

distribution according to16

Gℓ(w) =
Fℓ(w)

1 + k(1− Fℓ(w))
. (12)

The parameter k ≡ λe/δ summarizes the speed at which workers climb the job ladder relative to

the rate at which they fall back to unemployment. Given the wage offer distribution Fℓ and the

employment distribution Gℓ, the number of employed workers per wage offer w in location ℓ is

nℓ(w) =
1

θℓ

1 + k

[1 + k(1− Fℓ(w))]
2 , (13)

where θℓ ≡ Mℓ/eℓ is the labor market tightness in city ℓ. Equation (13) is the local labor supply

curve. The supply curves slope upward: workers employed at high-wage jobs keep the same job for

relatively longer since there are relatively fewer better-paying opportunities to switch to.

The labor supply curves differ across locations in two ways as shown in Figure 5. First, the yield

of a vacancy is lower in tighter labor markets (Figure 5a). Second, the competition for workers —as

represented by the job offer distribution— may be fiercer. In particular, in locations with a higher

job offer distribution in the first order stochastic dominance (FOSD) sense, the labor supply curve

shifts downward as workers transition more often to better paying opportunities (Figure 5b). Search

frictions, as summarized by k, determine the sensitivity of the supply curve to local competition. If

frictions are high, workers transition infrequently across jobs, thus flattening the labor supply curve.

In the limit of infinite frictions (k → 0), the number of workers per job offer is entirely given by the

market tightness, as depicted by the dashed lines in Figure 5.

Within a city, unemployed workers tradeoff a higher search efficiency against lower present

16The derivation of the labor supply curve is similar to Burdett and Mortensen (1998) and detailed in Appendix B.1.
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Figure 5: Local labor supply curves
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earnings. They accept any wage offer greater than the city-specific reservation wage wℓ given by

wℓ = b+ (λu − λe)

∫ ∞

wℓ

1− Fℓ(w)

ρ+ δ + λe(1− Fℓ(w))
dw. (14)

In locations with a better job offer distribution, the option value of searching is higher, and so is

the reservation wage. The gap between the search efficiency of unemployed and employed workers

controls the sensitivity of the reservation wage to the job offer distribution. By contrast, the

reservation wage is independent of local amenities and housing prices since these affect all workers

equally.

Across space, unemployed workers choose where to live considering the future stream of job

opportunities, housing prices and amenities. The lifetime utility of unemployed workers in location

ℓ rewrites

Uℓ =
AℓWℓ

Pℓ
, (15)

where Wℓ is the net present value of expected future income. When workers are infinitely patient,

this equals expected income: Wℓ =
1

1+ku b+
(
1− 1

1+ku

)
Eℓ[w], where 1

1+ku is the ex-ante probability

to be unemployed. Equations such as (15) are standard in static spatial frameworks à la Rosen

(1979) and Roback (1982) except that workers choose where to live based on their current, not

future, earnings.

In cities with a better job offer distribution, expected future incomes are higher. In equilibrium,

housing prices adjust to make unemployed workers indifferent across locations, and as a result, the
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real reservation wage must be lower for unemployed workers to be willing to live elsewhere. Said

differently, workers on low rungs of the ladder accept jobs with relatively lower real earnings in

anticipation of future wage growth.

Proposition 1 summarizes the results on the bottoms of the local job ladders.

Proposition 1 (Reservation wage).

Consider two locations, ℓ and ℓ′, and ℓ has a higher wage offer distribution in the FOSD sense.

Then, the nominal reservation wage is higher in ℓ, wℓ ≥ wℓ′, strictly if λe < λu. Meanwhile, the

real reservation wage gross of amenities is strictly lower,
Aℓwℓ
Pℓ

<
Aℓ′wℓ′
Pℓ′

.

The wage offer distributions are equilibrium objects determined by employers’ optimal wage

posting. I now solve for the wage offer distributions.

2.3 Local wage distributions

I focus on the employer’s problem in steady state assuming a low discount rate (λ→ 0). Employers

choose where to produce, how many workers to hire, and which wage to offer, to maximize their

flow profits:

π(z) = max
ℓ
πℓ(z) = max

ℓ

{
max
w,n

R(z, n)− wn− rℓ s.t. n ≤ nℓ(w)

}
. (16)

Employers’ hiring decisions are constrained by the local labor supply curves. Wages then become

an effective hiring tool: a higher wage allows employers to poach and retain more workers from the

competition. In addition, employers internalize that they can adjust their labor supply curve by

changing location.

The solution to (16) consists of two joint fixed points. First, given a spatial allocation of

employers, the wage posted by an employer depends on the local wage offer distribution, which

itself is a function of the wage-setting strategies of other employers. Second, employers factor in

local prices when choosing their production location, themselves a function of other employers’

location choice. I thus solve (16) in two stages. First, I derive the optimal wages for a given spatial

allocation of employers. I then characterize employers’ location decision.

Within cities, the results from Burdett and Mortensen (1998) apply for any spatial allocation

of employers, {Mℓ, dΓℓ}Lℓ=1. Employers are on their labor supply curve, n = nℓ(w). The wage

offer distributions are continuous over the interval [wℓ, w̄ℓ].
17 The complementarity in the revenue

function between employer productivity and their size implies that wages are strictly increasing

in z within cities: more productive employers have a larger target size, and for that, offer higher

wages. As a result, the rank of a job in the local wage offer distribution must correspond to that

17Continuity holds independently of the local employer distribution. For instance, if some employer distribution
has a hole, employers with productivity to the right of it have no incentives to offer wages strictly greater than the
wage offered by employers to the left of the hole as this would yield the same size.
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of the employer in the local employer distribution. That is, the wage offer distributions satisfy

Fℓ[wℓ(z)] = Γℓ(z), where wℓ(z) is the optimal wage posted by z in city ℓ.

The wage distribution of city ℓ is determined by two functions. First, the number of workers

employed at a job with productivity z ∈ suppΓℓ is

nℓ(z) ≡ nℓ[wℓ(z)] =
1

θℓ

1 + k

[1 + k(1− Γℓ(z))]
2 . (17)

Employer size directly follows from the labor supply curves (13) and the rank-preserving condition

Fℓ[wℓ(z)] = Γℓ(z). Second, the wage offered by an employer with productivity z ∈ suppΓℓ is

wℓ(z) = wℓ︸︷︷︸
Outside
option

×
(
nℓ(zℓ)

nℓ(z)

)
︸ ︷︷ ︸
Emp. share
from unemp.

+

(
1− nℓ(zℓ)

nℓ(z)

)
︸ ︷︷ ︸

Emp. share
from poaching

×En
′
ℓ [Z | Z ≤ z]︸ ︷︷ ︸
Competitors’

avg. productivity

, (18)

where zℓ ≡ minΓℓ is the least productive employer in ℓ, and the expectation is taken with respect

to the measure dnℓ(z).

Employers’ monopsony power implies that the wage they offer depends on the competition they

face. How fierce this competition is depends on two factors: how many workers an employer poaches

from their competitors, and how willing these competitors are to retain their workers. The location

where employers produce shapes the second dimension, but the effects are heterogeneous across

employers depending on their relative productivity.

The least productive employers in a city indeed only hire workers from unemployment as they

cannot compete with the other firms. The wage they offer thus reflects unemployed workers’ outside

option, wℓ. In the limit where λe → λu, this outside option coincides with the unemployment

insurance, b. Workers at the bottom of the local ladders thus earn similar wages, no matter in which

city they are and who hires them. Said differently, low-paying jobs are present in every location.

More productive employers offer higher wages to poach workers from their lower-paying competi-

tors. This poaching game builds up throughout the job ladder: the higher the relative productivity

of an employer, the more competition it faces, and therefore the more the wage it offers depends

on the local productivity distribution. When all employers are relatively more productive, the

poaching competition intensifies. The wage distribution shifts up, and along with it the average

wage. However, these wage gains are concentrated at the top of the ladder where employers face off

all the local competition.

Combined, the local concentration of productive employers steepens the job ladder. Workers

experience faster wage growth when switching job as they have access to a relatively greater number

of high-paying jobs. As a result, they are willing to accept lower real earnings when unemployed in

anticipation of higher future real earnings.

Proposition 2 formally characterizes local wages as a function of the productivity distributions.
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Proposition 2 (Spatial wage inequality).

Consider two locations, ℓ and ℓ′, such that the employer productivity distribution in ℓ is higher in

the FOSD sense, Γℓ ≻FOSD Γℓ′. Then,

1. The wage distribution in ℓ first order stochastically dominate that in ℓ′, Gℓ ≻FOSD Gℓ′. As a

consequence, the wage gains upon a job switch are larger, Eℓ[Ww |W > w,w] > Eℓ′ [Ww |W >

w,w], and the real reservation wage is lower.

2. The top-to-bottom wage gap is larger in ℓ, w̄ℓ −wℓ > w̄ℓ′ −wℓ′ , and
w̄ℓ
wℓ
>

w̄ℓ′
wℓ′

if λu − λe ≥ 0 is

not too large;

Proposition 2 replicates the two facts that called for a new theory of spatial wage inequality. It

holds to the extent that local productivity distributions are ordered in term of first order stochastic

dominance. I now show this is the case in equilibrium.

2.4 The spatial allocation of employers

The profits of an employer at its optimal wage offer is

πℓ(z) = [z − w(z,Γℓ)]n[Γℓ(z), θℓ]− rℓ. (19)

where, with a slight abuse of notation, I have made explicit the dependence of the optimal wage

and size on the spatial allocation of jobs. Employers produce in the location(s) that maximize their

profits:

πℓ(z) ≥ πℓ′(z) for all ℓ
′ ̸= ℓ ⇐⇒ z ∈ supp Γℓ. (20)

An equilibrium spatial allocation of employers is a tuple {Mℓ, dΓℓ}Lℓ=1 that satisfies feasibility (8)

and profit maximization (20).

The complementarity between productivity and size shapes the spatial allocation of employers.

However, employer size is an equilibrium object. Labor market tightness determines the level of the

supply curve. Local competition shapes employers’ relative size. The profitability of each location

thus depends itself on the spatial allocation of employers, and standard optimal transport techniques

cannot be used to solve the assignment problem (20) (Chade and Eeckhout, 2020). Nevertheless, a

sharp characterization of employers’ location choice exists. I first show that productive employers

concentrate in cities with slacker labor markets, and then establish that these are larger cities.

First, hold fix the local labor market tightness. All else equal, productive employers have a

stronger willingness to pay to produce in slacker labor markets to sidestep search frictions. In

equilibrium, a tension arises between tightness and competition: when all productive employers

agglomerate in the slackest labor market, the local competition intensifies, and most employers

eventually hire few workers as they slide down the job ladder. The poaching competition thus intro-

duces substitutability across locations. Weak search frictions increase this tradeoff by accelerating
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Figure 6: The spatial allocation of employers
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the reallocation of workers to high-paying employers. Proposition 3 formalizes this intuition.

Proposition 3 (Local productivity distributions).

Locations with slacker labor market attract relatively more productive employers: θℓ < θℓ′ if and

only if Γℓ ≻ Γℓ′. If search frictions are small relative to the difference in tightness,
√

θℓ′
θℓ
< 1 + k,

productivity distributions overlap, dΓ(suppΓℓ ∩ suppΓℓ′) > 0.

Figure 6(a) visually represents Proposition 3. The figure depicts the local labor supply curves,

nℓ, against employers’ rank in the local productivity distribution. The blue and orange curves refer

to locations with a slack and a tight labor market. The solid lines refer to an allocation with weak

search frictions (k > 0) whereas the dashed lines depict an allocation with infinite frictions (k → 0).

When search frictions are large, employers mostly hire from unemployment. Employers in

slacker labor markets are uniformly larger. The complementarity between productivity and size

then guarantees that if an unproductive employer find it profitable to produce there, then so must a

productive employer. In addition, as in standard matching model, the uniformly greater size ensures

that no (positive measure of) employers is indifferent between a slack and a tight labor market.18

When workers reallocate from low- to high-paying employers, the labor supply curves instead

slope upwards and employers’ relative productivity determines how many workers they can poach

18Whether employers prefer a slack or a tight labor market depends on the local housing prices, which are held
fixed in Proposition 3. Accordingly, it can well be that all employers strictly prefer to locate in the tightest labor
market. Then, Proposition 3 trivially holds as suppΓℓ′ = ∅ for all but one ℓ.
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and retain from the competition. Sorting must still prevail. Within any city, relatively productive

employers have a larger size than their unproductive competitors. Therefore, they still find it

relatively more profitable to locate in slacker markets. However, the concentration of productive

employers in slack labor markets intensify the local competition. Relatively unproductive employers

struggle to hire workers and can now attain the same size in tighter labor markets with milder

competition. Indifference follows for mid-productivity employers, and the sorting of employers across

space is no longer perfect.

Either way, productive employers concentrate in slack markets to sidestep search frictions, and

the local productivity distributions are ordered in the first order stochastic dominance sense.

In equilibrium, larger cities have slacker labor markets. Large cities are relatively attractive,

and a greater number of employers locate there. As a result, commercial housing prices rise, and

not every employer produces in the largest city. In particular, this congestion force implies that the

labor market in larger cities remains slacker despite having more jobs.19 Proposition 4 states this

result formally.20

Proposition 4 (Labor market slackness).

Suppose that λe ≈ λu. Then, in equilibrium, large cities attract more employers but have a slacker

labor market: mℓ > mℓ′ ⇐⇒ Mℓ > Mℓ′ ⇐⇒ θℓ < θℓ′.

Figure 6(b) depicts the equilibrium spatial allocation of employers that correspond to the labor

supply curves on the left panel. High housing prices in the large city prevent low productivity

employers from producing there. When search frictions are large, the labor supply curve jump up

from a tight to a slack labor market, and all employers above a productivity threshold produce in

the larger location. When frictions are weaker, mid-productivity employers are indifferent between

small and large places. Finally, productive employers locate in the largest city to maximize their

size at the expense of higher wages and housing prices.

Propositions 1 to 4 thus show that the sorting of employers across space generates between-

and within-city inequality. Productive employers concentrate in large, slack cities to sidestep

search frictions. The local labor market competition intensifies. The higher productivity spillovers

disproportionally to workers at the top of the job ladder without materializing for low-paid workers.

As a result, larger cities offer higher wages, greater within-city inequality, and faster wage growth as

workers reallocate from low- to high-paying employers.

Before confronting the quantitative prediction of the model with the data, it is worth emphasizing

the unique feature of this model: spatial wage inequality arises without local TFP gaps. Search

frictions are crucial to arrive at this conclusion.21 To make this point, I write down in Appendix B.8

19Figure C.18 confirms the prediction of Proposition 4 in the data. Labor market consistency implies that the
tightness is the inverse of employers’ average size, MℓEℓ[nℓ(w)] = eℓ. Figure C.18a shows that the average number of
workers per employer is larger in bigger cities.

20Uniqueness is harder to establish as the underlying fixed point is non-linear and of infinite dimension. However,
Proposition 4 holds in any equilibrium.

21This prediction would generally hold in any framework with local upward slopping labor supply curves. Search
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a general model of employer sorting with competitive labor markets. In this environment, firms

sort across space to access high revenue TFP and cheap inputs. If TFPs are homogeneous across

locations, productive employers concentrate in large cities only if wages are relatively lower. Said

differently, high local TFP in large cities is necessary to generate higher wages —even in the presence

of firm sorting.22 Search frictions break this necessity result because employers sort to access slacker

markets, and they are willing to pay higher wages for that.

Propositions 1 to 4 do not contain quantitative predictions; I therefore turn to estimating the

model to assess how well it aligns with the data, and through this, re-assess the drivers of spatial

wage disparities.

3 Extended model and estimation

Extensions I relax the strong assumptions imposed until now. Across space, I allow cities to differ

in terms of TFP, Tℓ. Local TFP complements employer’s productivity: the MPL of a worker hired

by employer z in location ℓ is zTℓ. I assume that local TFPs are exogenous.23 Since unemployment

insurance does not scale up with TFPs, higher TFP generates higher wages and wage inequality. It

is therefore a quantitative question whether spatial wage disparities arise from employer sorting or

TFP gaps.

On the employer side, I made two extensions. First, employers face idiosyncratic housing or

entry costs, {εℓ}Lℓ=1. Second, I let employers hire many workers without increasing wages too rapidly

by posting several vacancies — or more generally, exerting endogenous hiring effort. Vacancies are

costly and come at a convex cost

c(v) =
v1+γ

1 + γ
,

where γ > 0 denotes the vacancy cost elasticity. Employer size reflects their position in the local job

ladder together with their vacancy share:

nℓ(w, v) =
(1 + kℓ)eℓ

[1 + kℓ(1− Fℓ(w))]
2

v

Vℓ
, (21)

where Vℓ is the aggregate number of vacancies posted in location ℓ,

Vℓ =Mℓ

∫
vℓ(z)dΓℓ(z). (22)

Search frictions are now city-specific and are determined by the matching function λuℓ = M(uℓ +

frictions provide a microfoundation for the supply curves, and they generate reallocation from low- to high-paying
employers over time as in the data.

22These local TFPs could be either exogenous or endogenous (e.g., knowledge spillovers, market access, etc.).
Regardless, they need to be (i) local and (ii) affects the marginal product of labor.

23This assumption turns out to be without loss of generality since that I estimate homogeneous local TFPs.
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ζeℓ, Vℓ)/(uℓ + ζeℓ), where ζ is the relative search intensity of employed workers, λeℓ = ζλuℓ .

With these two new ingredients, an employer with productivity z and entry costs {εℓ}Lℓ=1 solves

π(z, {εℓ}Lℓ=1) = max
ℓ,w,n,v

R(zTℓ, n)− wn− c(v)− rℓ − εℓ s.t. n ≤ nℓ(w, v). (23)

Finally, I introduce two additional reasons why workers may accept lower real earnings in large

cities. First, I add migration costs. Workers permanently exit the labor force at Poisson rate

ξ, upon which they are replaced by their descendant.24 New entrants enter the labor force in

the same location as their parent, and must pay a pecuniary flow migration cost κ to relocate

elsewhere.25 Migration costs imply that the welfare of unemployed workers are no longer equalized

across locations.

Second, individuals have idiosyncratic preferences for each location. These preferences, which

also ensure uniqueness of the equilibrium when they are sufficiently dispersed across workers, are

drawn upon entry in the labor force and remain constant thereafter. The flow utility of a worker

with preferences {ωℓ′}Lℓ′=1 in location ℓ is

uℓ(c, h, {ωℓ′}Lℓ′=1) = Aℓωℓ

(
h

α

)α( c

1− α

)1−α
.

A full description of the model, together with a definition of the equilibrium, is presented in

Appendix C.1.

Parametric assumptions I impose the following parametric assumptions. The aggregate pro-

ductivity distribution is Pareto with shape σ. Its scale is normalized to ensure a mean productivity

of one. The idiosyncratic entry costs of employers are i.i.d. across space. They are drawn from

Gumbel distribution with inverse dispersion ϑ. Workers’ idiosyncratic preferences are i.i.d. Fréchet

distributed with shape χ. Finally, the matching function is Cobb-Douglas with matching efficiency

µ and elasticity ψ: Mℓ = µV ψ
ℓ (uℓ + ζeℓ)

1−ψ.

3.1 Identification

Model inversion The estimation of the model is organized in two blocks. Its core is contained in

the first block, which leverages the structure of the model to estimate the bulk of the parameters

without the need for simulation. Proposition 5 proves identification of 16 of the 20 parameters.

Proposition 5 (Identification).

Given aggregate data on flows in- and out- of employment, location-specific data on job switching

rates, commercial and residential housing prices, and firm-level employment and wage data, the

24Entry and exist of workers is required to have well-defined migration flows.
25This migration cost can alternatively be interpreted as losses in flow utility. I assume away heterogeneity in

migration costs across locations because the city clusters do not contain geographic information (e.g., distance).
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parameters α, b, δ, ζ, ξ, µ, ψ, M , γ, L̄, θ, H̄, and ϕ are identified. The dispersion in employers’

idiosyncratic entry cost ϑ is identified conditional on small TFP differentials. Local amenities

{Aℓ}Lℓ=1 and the migration cost κ are identified given workers’ discount factor ρ and idiosyncratic

location preferences χ.

The proof is detailed in Appendix C.2. I present here the intuition behind the proof, focusing

on the parameters that govern employer sorting. The location choice of employers is pinned down

by four sets of parameters: the spatial allocation of workers, search frictions, the dispersion in entry

costs, and TFPs. Three of these four parameters are identified by Proposition 5.

First, the spatial allocation of workers is observed and can be rationalized by the appropriate

vector of amenities. Hence, it can be treated as a primitive for the purpose of identification.

Second, search frictions are identified from worker flows. The aggregate employment-to-

unemployment rate is equal to δ. The labor force exit rate ξ is identified from the average

career duration: ξ = 1/E[career length]. The location-specific job switching rates J2Jℓ identify

the contact rates of employed workers λeℓ after accounting for rejected offers along the job ladder:

J2Jℓ = δ((1 + δ/λeℓ) log(1 + λeℓ/δ)− 1). The aggregate unemployment-to-employment rate relative

to the J2J rate pins down the search efficiency of employed workers ζ. Finally, the matching

function is identified from the correlation between the local contact rates and labor market tightness,

log λuℓ = logµ+ ψ log Vℓ
uℓ+ζeℓ

, where the mass of vacancies Vℓ is recovered from employer size and

their position on the local job ladders.

Third, the dispersion in entry costs is identified from the correlation between local profit

opportunities and employers’ location choice. Given the Gumbel parametric assumption, the

log-likelihood that an employer j with productivity zj locates in ℓ is

log Ωℓ(zj) = H(zj) + ϑπℓ(zj), (24)

where H(z) ≡ − log
∑

ℓ′ e
ϑπℓ′ (z).

To recover profits on the right-hand side of (24), I extend the insights of Bontemps et al. (2000) to

a setting with local labor markets. Employer productivity is identified from wages net of markdowns.

Specifically, the wage optimality condition behind (18) demands

zjTℓj ≡ ζj = wj +

(
1 + kℓj (1− Fj)

2kℓj

)
∂wℓj (Fj)

∂F
, (25)

where ℓj denote the production location of j, Fj their rank in the local wage offer distribution, and

wℓ(F ) is the inverse function of Fℓ(w). ζj refers to the total productivity of j gross of the local TFP.

Vacancy costs are computed from employer size net of their position in the job ladder. Employers’

rank, together with the search frictions they face, determines the number of workers they hire

per vacancy through the labor supply curves. Their vacancy share vj/Vℓj are then recovered from

their size using (21). The vacancy optimality condition log vj/Vℓj =
1

1+γ log[(ζj − wj)nj ]− log Vℓj
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identifies the vacancy cost elasticity γ. It also pins down the number of vacancies in each location,

and therefore the vacancy cost paid by employer j: cj = v1+γj /(1 + γ).

Combining these steps, I obtain profits as revenues net of wages, vacancy costs, and housing costs:

πℓj (ζj) = (ζj − wj)nj − cj − rℓj . If TFPs are relatively similar across locations, the productivity

of employers closely tracks their MPL. In that case, πℓ(ζj) ≈ πℓ(zj), and I can use (24) to directly

estimate the dispersion in entry costs. In practice, TFP gaps may be large. I address this concern

in two ways. First, I include location fixed effects in (24). Second, instead of reading the entry cost

dispersion from (24), I target the conditional correlation in the second estimation block allowing for

arbitrary TFPs.26

Indirect inference The second step of the estimation calibrates jointly 3 of the remaining 5

parameters by indirect inference. Given the parameters identified by Proposition 5, I simulate the

model and minimize the distance between a vector of empirical statistics and the same statistics in

the model. First, I calibrate local TFPs as residuals to match the average wage of each city net of

the employer sorting predicted by the model. Second, I calibrate the productivity dispersion σ to

match the aggregate wage variance. Third, I estimate (24) in the model in the same way as in the

data, and I set the entry cost dispersion to match the empirical conditional correlation.

3.2 Data

I briefly describe the data used for the estimation before turning to the estimation results. Further

details are included in Appendix C.3.

I set a quarterly frequency and normalize nominal variables by the aggregate average wage. To

abstract from worker heterogeneity, I measure wages by the employer fixed effects estimated in

Section 1.3.27

I solve the model for the 10 city groups defined in Section 1.1. There remain 297 local labor

markets in the model, but each market within a group is homogeneous. Increasing the number of

city groups would increase measurement error in the estimates of the employer fixed effect.

I obtain residential housing prices from the Carte des Loyers (Rental Map). I do not have access

to city-level commercial rental rates. Instead, I define commercial housing prices as residential

housing prices adjusted for the aggregate relative price of commercial to residential housing. I

residualize residential housing prices by the mean worker fixed effect of each city to account for the

sorting of workers across space.

26The rest of the proof is standard. The Cobb-Douglas parameter is pinned down by the aggregate housing
expenditure share. The unemployment insurance is given by the aggregate replacement rate. The housing supply
parameters are obtained from the housing market clearing conditions. The migration cost is identified from the
probabilities of workers leaving their hometowns relative to the chances of staying. Finally, amenities are recovered as
a residual from the spatial allocation of workers.

27The conditional random mobility assumption behind the AKM specification is valid in random-search wage-
posting models (Card et al., 2013). The log-linear specification is well-specified if workers’ skills affect their wages
multiplicatively and search frictions are constant across skills. When these assumptions fail, Bilal and Lhuillier (2021)
shows that the AKM specification still fits well the data.
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The aggregate flows in and out of employment are obtained from the Enquête emploi en continu

(Labor Force Survey). The local job switching rates are computed from the panel matched employer-

employee data. Consistent with the model, I define a job switch as a transition between jobs within

a location that leads to a wage increase. To account for the sorting of workers across space, I

project worker-level job switching rates on worker and location fixed effects and use the latter for

the estimation (Figure C.17b).

I read the housing expenditure share from the aggregate national accounts (INSEE, 2020) and

set the replacement rate to 0.6 (OECD, 2025).

Finally, I externally calibrate the discount rate and the dispersion in workers’ idiosyncratic

location preferences. I set ρ = 0.004 to match an annual real interest rate of 5%. I follow the literature

and set the taste shock dispersion to 5 as in Caliendo et al. (2019). As shown in Proposition 5,

these two parameters are relevant only for the estimation of amenities and migration costs.

3.3 Results

Table 1 presents the parameter estimates. As in Section 3.1, I focus the discussion around the

parameters that shape employers’ location choice and wage strategy.

Search frictions are relatively strong. The aggregate contact rate for unemployed workers is 0.2,

and the job destruction rate gross of the exit rate is 0.03. The job switching rate is substantially

lower than the UE rate at 3.8%. However, employed workers do not necessarily switch jobs when

receiving a job offer. Accounting for rejected offers, I find that the search efficiency of employed

workers is only 6.3% lower than that of the unemployed. Employers are able to partially sidestep

these frictions by posting more vacancies as I estimate a relatively low vacancy cost elasticity

(γ = 2.1). These parameters are all aligned with benchmark estimates in the literature.

Search frictions are constant across space. I estimate that the job switching rates are homogeneous

across cities after accounting for worker sorting (Figure C.17). Meanwhile, Figure C.18b shows that

larger cities have a slacker labor market, consistent with Proposition 4. These two patterns are

reconciled with the absence of congestion from vacancies in the matching functions (ψ ≈ 0).28

My estimate of the entry cost dispersion lines up with the recent papers that study firms’

location choice. I estimate ϑ = 1.7, close to the conditional correlation given by (24). Converting

my estimate to a Fréchet elasticity, I obtain 1.8, between the 1.3 of Giroud and Rauh (2019) and

the 2.6 of Fajgelbaum et al. (2018).

Given these parameters, I estimate that TFPs are homogeneous across locations. There are

large variations in city size, and search frictions are binding. Productive employers therefore have

strong incentives to concentrate in large cities to maximize their size. Figure 7a shows that the

mean employment-weighted employer productivity in Paris is 18.9% larger than in Lens. Meanwhile,

28This estimate departs from standard values in search-and-matching model that often set ψ = 0.5 (Petrongolo
and Pissarides, 2001). At the same time, several papers in the spatial literature argue that large cities facilitate the
matching between workers and firms (e.g., Moretti, 2012; Moretti and Yi, 2024). In this setting, this thicker market
externality takes place if ψ < 0. My matching function estimate lies between these two literatures.
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Table 1: Parameter estimates

Parameter Target
Empirical
moment

Simulated
moment

Parameter
estimate

A. External calibration

ρ Discount factor Annual interest rate 5% 0.004

χ Taste shock dispersion Caliendo et al. (2019) 5.000

B. Model inversion

α Cobb-Douglas preference Housing exp. share 0.200 0.200

AAA Amenities Employment distribution · ·
b Unemployment insurance Replacement rate 0.600 0.681

κ Migration cost Migration rate 0.454 0.220

δ Job destruction rate EU rate 0.021 0.021

ζ Rel. search efficiency EE / UE rate 0.193 0.937

ξ Exit rate Average career length 120.0 0.008

µ Matching efficiency Avg. EE rate 0.038 0.197

ψ Matching function elasticity Correlation EE rate - tightness 0.000 0.000

M Mass employers Average size 7.193 0.121

γ Vacancy cost elasticity Vacancy optimality (51) 2.115 2.115

L̄ Residential housing supply level Avg. residential price 0.478a 183.8

θ Residential housing supply elasticity Correlation prices - expenditures 0.095 9.546

H̄ Commercial housing supply level Avg. commercial price 1.196 0.165

ϕ Commercial housing supply elasticity Correlation prices - employer demand 0.209 4.788

C. Indirect inference

σ Productivity dispersion Wage variance 0.180 0.179 9.48

ϑ Entry cost dispersion Equation (24) 1.617 1.592 1.709

TTT TFP Average wage Fig. 7a Fig. 7a Fig. 7a

a Average residential price expressed in hundredths.

the gap in average wage premia is 11.9%. Once taking into account employers’ market power, the

sorting of employers across locations thus suffices to explain why the average wage premia is greater

in larger places.29 The between-city TFP variance accounts for 1.5% of the between-city MPL

variance, and 3.2% of the between-city wage variance.30

The spatial agglomeration of productive employers lies at the root of the between-city wage

premia differences. I now assess whether it also generates the facts that motivated this framework.

29The difference between employers’ productivity and their wage is determined by the labor supply elasticity they
face. In this framework, this elasticity is not a structural parameter. Instead, it depends jointly on the search frictions,
the vacancy cost elasticity, and the spatial allocation of employers. Altogether, the model produces an average labor
supply elasticity (E[∂ lognℓ(w)/∂ logw]) of 5.5 and an average markdown (E[wℓ(z)/(zTℓ)]) of 0.74, which align closely
with the estimates of Lamadon et al. (2022) for the United States.

30The TFPs measured here capture labor productivity since the model is estimated on wage data. It may thus be
that large cities amplify firm’s productivity, but this is not passed-through onto wages.
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Figure 7: Spatial wage inequality in the data and the model
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4 Employer sorting and within-city inequality

The estimation strategy proposed in Section 3.1 does not target how inequality or the local

returns to job switching vary across space. In addition, the model is substantially over-identified: it

only has the aggregate productivity distribution to explain the wage premia distribution of every

location. In this section, I thus use the two novel facts of Section 1 as over-identification exercises.

4.1 The consequences of local competition on wages

I first start by asking whether larger cities are more unequal in the model. Figure 7b displays the

within-city wage premia dispersion, in the data on the x-axis and in the model on the y-axis. The

grey dashed line is the 45 degree line.

I find that the concentration of productive employers in large cities does generate greater

within-city inequality. The differences in local inequality aligns well with the data.

To understand how different parts of the wage distributions vary across space, I project each

city’s wage deciles on the size of the city. Figure D.19 plots these decile-specific city size elasticity,

in orange in the data and in blue in the model.

As in the data, greater inequality arises in larger cities because high-paying jobs are spatially

concentrated whereas low-paying jobs are spatially dispersed. Workers at the bottom of the local

wage distribution indeed earn the same wage everywhere. For instance, workers in the bottom 10%

in Paris earn wages 3.2% higher than workers in the bottom 10% in Lens (compared to 1.7% lower

in the data). By contrast, workers at the top of the local ladder disproportionally gain from working
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Figure 8: The impact of employer composition and local competition on wages
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in larger cities: the wage gap between Paris and Lens for workers in the top 10% of their local

distribution is 21.7% (compared to 15.3% in the data).

Given the homogeneity of TFP across locations, the spatial differences in wages ultimately follow

from the allocation of employers. However, cities are not a simple clustering of jobs: they shape

wages by determining the competition faced by employers.

To decompose the relative importance of employer sorting and local competition, I define

the markdown charged by employer z in location ℓ as µℓ(z) ≡ wℓ(z)/zTℓ. Markdowns are the

standard metrics to quantify labor market power. With this convention, a higher markdown means

less market power. I also define the (unweighted) average markdown charged by employer z as

µ̄(z) = L−1
∑

ℓ µℓ(z). Then, for any wage partition W, the average log wage in location ℓ can be

decomposed into

Eℓ[logw | W] = Eℓ[log zµ̄(z) | W] + Eℓ
[
log

µℓ(z)

µ̄(z)
| W

]
. (26)

The first term captures the direct effect of employer sorting on wages. As productive employers

concentrate in large cities, the MPL rise. However, monopsony power implies that wages and

MPLs differ. In particular, productive employers tend to charge lower markdowns wherever they

produce because their overall position in the job ladder shields them away from the competition

(Gouin-Bonenfant, 2022). For instance, while the average markdown is 0.74, it is 11.5 p.p. lower for

employers in the top productivity decile (Figure D.21a). The firm term thus summarizes how the
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employer composition affects wages assuming employers charge constant markdowns across space.31

The second term represents the impact of cities on wages through local competition. It is akin

to a “within-firm” effect: by how much the local competition affects the markdowns charged by an

employer above and beyond what they price on average.

Figure 8a begins by applying this decomposition to average wages. The blue markers display

the average wage premia by location. The orange circles plot the composition effect. The difference

between the two, summarized by the grey shaded areas, is the competition effect.

Local competition boosts substantially wages in the largest cities. The spatial concentration

of productive employers in Paris indeed intensifies the local competition for workers. As a result,

the average markdown is 1.5 p.p. higher than what it would given the local pool of employers,

and wages rise by 3%. At the same time, the spatial concentration of productive employers does

not redistribute competition away from the smaller cities. The spatial sorting of employers indeed

implies that they compete with relatively more similar firms, which (weakly) decreases their market

power. Altogether, local competition explains 21.1% of the between-city wage premia variance.

Figure 8b then applies the decomposition (26) separately for wages in the bottom and top 10%

of the local wage distribution. Figure 8b reveals that not every employer is equally affected by the

fiercer competition of large cities.

On the one hand, low-paying jobs exist throughout space because the lack of bargaining power

from unemployed workers prevents spatial productivity differentials from materializing. For instance,

employers in the bottom 10% of the wage distribution in Paris are 7.6% more productive than

employers at the bottom in Lens. If they were to set a uniform markdown, they would offer

wages 11.9% higher. However, in both places, these employers hire most of their workforce from

unemployment. They therefore face similar competitive pressure, offer a wage close to unemployed

workers’ reservation wages, and the higher productivity in Paris does not spillover onto higher wages.

On the other hand, the highest-paying jobs are spatially concentrated because they rely on the

intense competition unique to large cities. While employers in the top 10% of the wage distribution

in Paris are substantially more productive than employers at the top in Lens (33.1%), they also

tend to charge substantially lower markdowns all else equal. Combined, the wage gap between Paris

and Lens at the top of wage distribution would be 2.7% were markdowns uniform. However, every

employer in Paris is relatively more productive. This competitive pressure builds throughout the

local ladder as employers poach each other. As a result, employers in the top 10% of the wage

distribution in Paris offer markdowns 10.1 p.p. higher than they would typically charge.

This heterogeneous competition effect across employers is unique to this framework. It arises

from the interaction between employer sorting and local frictional labor markets. Crucially, it is this

mechanism that lets the model replicate the first fact documented in Section 1.3. Figure D.20 indeed

31The uniform markdown µ̄(z) is not an equilibrium object. In particular, it may correspond to the markdown
employers would use if there were a single city. In Figure D.21b, I solve the model with homogeneous locations
(AAA = 1,TTT = 1), and depict the function z → µ̄(z) together with the equilibrium markdown in this counterfactual
model. In practice, the two distributions are very similar.

34



Figure 9: The consequences of local ladders on wage growth and lifetime earnings
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shows that, were markdowns uniform across locations, the agglomeration of productive employers in

large cities would generate lower inequality.

4.2 How local ladders shape earnings

Proposition 2 shows that the concentration of high-paying jobs in large cities implies a steeper

local job ladder. In the second over-identification exercise, I assess what are the consequences of the

local ladders for wage growth, lifetime earnings, and the spatial distribution of economic activity.

Figure 9a plots the local returns to job switching, in the model on the y-axis and in the data on

the x-axis. In the data, I use the estimates restricted to job switches associated with wage growth

to ensure consistency with the model. In the model, the local returns are computed as the average

wage growth conditional on a job switch:

Eℓ
[
W ′

W
| switch

]
=

∫
1

1− Fℓ(w)

∫
w

w′

w
dFℓ(w

′)dGℓ(w).

The model overpredicts the aggregate gains of job switching. On average, job switchers experience

an average wage increase of 9.9% in the model; this is 5.6% in the data. However, the between-city

differences in the returns to job switching aligns well with the data. Workers who switch jobs in

Paris enjoy wage increase 2.6 p.p. higher than in Lens in the model, compared to 2.9 p.p. in the

data. Throughout space, the correlation between the model and the empirical estimates is 96.1%.

The steeper ladder in larger cities generates faster growth, and therefore higher lifetime real

earnings, for workers there. The orange circles in Figure 9b shows the present real earnings of new
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entrants in each location. The blue rectangles are the net present value (NPV) of their expected

real lifetime earnings.

New entrants earn lower real earnings in larger cities. They start as unemployed, and while

housing is more expensive in larger cities, unemployment insurance is constant throughout space.

However, real lifetime earnings are higher as workers have access to better future opportunities. For

instance, while the current real earnings of new entrants in Paris is 8.1% lower than in Lens, their

real lifetime earnings are 4.2% higher. Generalizing to all cities, I find that the NPV of real lifetime

earnings for new entrants is 1% higher in cities twice larger.32

The reallocation of workers across jobs, and the wage growth it begets, are thus key to the

spatial distribution of economic activity. I conclude this paper with a counterfactual that quantifies

their importance. Specifically, I simulate a decrease in the job switching rate via an increase in

search frictions. I set the counterfactual frictions so that the job switching rate is one percentage

point lower —a trend observed in the United States and other countries during the late 1990s and

early 2000s (e.g., Engbom, 2019).33

I solve for three counterfactual economies. In the first, which I refer to as the worker partial

equilibrium, I compute the new spatial allocation of workers holding constant the wage offer

distributions. In the second, I let employers re-optimize their decisions holding constant the spatial

distribution of workers —the employer partial equilibrium. Finally, the third counterfactual is the

general equilibrium. In all cases, I compare the economies in steady state.

Figure 10 traces the response of lifetime earnings and average employer productivity in Paris

and Lens to the decline in the job switching rate.34 Appendix D.1 generalizes the analysis to all the

French cities.

I first detail the partial equilibrium results, summarized by the dashed lines. When frictions are

stronger, workers stay employed relatively longer at low-paying jobs. Holding constant the wage offer

distributions, lifetime earnings shrink, and disproportionally so in larger cities. For instance, the

gap in new entrants’ lifetime earnings between Paris and Lens drops by 2.2 p.p.. As a result, large

locations become less attractive. The effects are sizable: in partial equilibrium, a one percentage

point decrease in the job switching rate leads to 12.7% decrease in the number of workers in Paris,

and a 5.2% increase in Lens’ size (Figure D.23b).

The partial equilibrium consequences on local productivity are a priori more ambiguous. On

the one hand, large cities are more attractive for unproductive employers, who can now retain a

greater fraction of their workers. On the other hand, productive employers value relatively more the

slackness of large cities since it is relatively harder for them to poach workers from their competitors.

Figure 10(b) shows that the first force dominate in partial equilibrium. Holding constant city sizes,

32There are also differences in lifetime earnings across workers within cities. However, when the discount rate is
relatively low, these differences are small. As a result, the between-city differences in average lifetime earnings are
similar to that of new entrants, with a city-size gradient of 0.011.

33The change in search friction is uniform across locations due to the absence of congestion in the matching function.
34Stronger frictions also affect aggregate lifetime earnings and productivity. Figure 10 expresses the two variables

relative to their respective national average to net out the aggregate effect.
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Figure 10: Search friction and the spatial distribution of activity
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an increase in search frictions reduces the between-city differences in employer average productivity.

The effects are also large: the gap in average employer productivity between Paris and Lens drops

from 18.9% to 15.9%.35

In general equilibrium, the response of workers interact with that of employers. Productive

employers find it more profitable to produce in small cities —which are now relatively larger—

thereby amplifying the partial equilibrium increase in productivity. In the major cities, the decrease

in productivity further depresses lifetime earnings. These general equilibrium interactions amplify

significantly the partial equilibrium effects. The average productivity gap between Paris and Lens

reduces to 14.7%. The extra lifetime earnings offered by Paris to new entrants are 2.9 p.p. lower

than in the baseline economy —twice the size of the partial equilibrium response. The number of

workers in Paris drops by 22.2%, and those in Lens rises by 10.1%.

Two key takeaways thus arise from Figure 10. First, local job ladders are instrumental for

the spatial distribution of economic activity and wage disparities. Second, the general equilibrium

interplay between employers’ spatial allocation and local labor markets frictions are of first order

importance.

35At the same time, more employers locate in large cities as higher frictions increase the profitability of these
locations for both unproductive and productive employers (Figure D.24a).
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5 Conclusion

In this paper, I document two novel facts about the importance of employers for spatial wage

inequality. First, while high-paying jobs are concentrated in large cities, low-paying jobs are present

throughout France. Second, workers access high wages in large cities by reallocating over time from

low- to high-paying jobs. I argue that standard spatial models fail to rationalize these facts. Instead,

I propose a new framework with two core features: spatial sorting of employers and frictional local

labor markets. I show, theoretically and quantitatively, that the model replicates the novel empirical

patterns. Hiring frictions imply that productive employers concentrate in large cities to maximize

their size; higher wages and greater within-city inequality follow despite the absence of local TFP

differentials. Workers in large cities earn higher lifetime earnings despite having lower real earnings

upon entry as they have access to better future opportunities. When workers reallocate at a slower

pace across jobs, the comparative advantage of large cities declines for workers and employers, and

spatial disparities dampen.

This framework opens the door to new questions. What are the consequences of minimum

wage reforms on local wage inequality? Should location-specific minimum wages be favored over a

uniform policy? What does the rise of superstar firms, as in Song et al. (2019) and Rossi-Hansberg

et al. (2021), imply for local labor market competition and spatial wage disparities? And does our

understanding of place-based policies change when employers compete for workers along local job

ladders? These questions, which can be answered within this new framework, are all fruitful avenues

for future research.
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Fajgelbaum, P. D., Morales, E., Suárez Serrato, J. C., and Zidar, O. (2018). State taxes and spatial

misallocation. The Review of Economic Studies, 86(1):333–376.

Franco, S. (2024). Output market power and spatial misallocation.

Gaubert, C. (2018). Firm sorting and agglomeration. American Economic Review, 108(11):3117–53.

Giroud, X. and Rauh, J. (2019). State taxation and the reallocation of business activity: Evidence

from establishment-level data. Journal of Political Economy, 127(3):1262–1316.

Glaeser, E. L. and Maré, D. C. (2001). Cities and skills. Journal of labor economics, 19(2):316–342.

40



Glaeser, E. L., Resseger, M., and Tobio, K. (2009). Inequality in cities. Journal of Regional Science,

49(4):617–646.
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A Two facts about spatial wage inequality

A.1 Data

A.1.1 France

Sample restrictions The employer tax records comes in two formats. The first format is a

long-panel that tracks the labor market history of 4% of the French workforce. The second format is

a repeated short-panel (two years) that provides information on the universe of jobs held by workers

—where a job is defined a pair establishment × occupation. I apply the same restrictions on both

datasets:

1. Exclude workers younger than 25 and older than 55 year old;

2. Exclude workers employed in the public sector;

3. Exclude the agriculture, education and health industries;

4. Keep only workers employed full-time;

5. Exclude workers that are non-employed for more than three years;

6. Exclude employment spell that lasts less than 30 days;

7. Exclude employment spell with no labor income or hours worked;

Construction of the panel Once a worker enters the long-panel, each of their employment spell

are recorded. An employment spell is defined as a pair establishment × occupation. The dataset

provides the start and end days of each employment spell. Workers can be observed multiple times

within a given period if they work for multiple employers or if they switch employers. By contrast,

a worker is observed only once per year if they work for a unique employer during that entire year.

I aggregate the data at the quarterly level. If workers hold multiple jobs within a quarter, I keep

the job that provides the highest total labor income. I only keep the information (e.g., employer’s

ID, occupation, etc.) associated to that employment spell.

A.1.2 United States

Wages I obtain wage date from the American Community Survey. I use sample restrictions similar

to the French data:

1. Exclude workers younger than 25 and older than 55 year old;

2. Exclude workers employed in the public sector;

3. Exclude the agriculture industry;

4. Keep only workers employed full-time (≥ 30 hours per week and 48 weeks per year);

5. Exclude workers with no labor income;

I define hourly wages as yearly labor income over the number weeks worked last year and the usual

amount of hours worked per week. I truncate the left-tail of the hourly wage distribution by US
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State at the 2.5% to reduce measurement error in hours worked.36

Housing prices I obtain rent data from the American Community Survey. To ensure consistency,

I compute local rents on the same sample as local wages for those who report positive rents.

Employment I obtain total private non-farm employment by US State from the Bureau of Labor

Statistics.

A.2 Accounting for sorting

The variance of log wages in any location reads

Varℓ[logwit] = Varℓ[ψit] + Varℓ[γit] + 2ρℓ(ψit, γit)Sdℓ[ψit]Sdℓ[γit] + Varℓ[εit],

where ρ(x, y) is the correlation between (x, y). The third term can thus be large because the

correlation between the employer and fixed effects is large, or because they are very dispersed.

No exact decomposition exists to separate those three effects. Instead, consider a first order

approximation of the wage variance around the point where spatial inequality is the same everywhere;

i.e., (Varℓ[ψit],Varℓ[γit], ρℓ(ψit, γit),Varℓ[εit]) ≈ (Var[ψit],Var[γit], ρ(ψit, γit),Var[εit]). To a first

order, we have

Varℓ[logwit] = Varℓ[ψit] + ρ(ψit, γit)(Varℓ[ψit]− Var[ψit])
(
Sd[γit]
Sd[ψit]

)
+

Varℓ[γit] + ρ(ψit, γit) (Varℓ[γit]− Var[γit])
(
Sd[ψit]
Sd[γit]

)
+

2ρℓ(ψit, γit)Sd[ψit]Sd[γit] + Varℓ[εit] + oℓ,

(27)

where oℓ is the approximation error. The first line is the impact of worker heterogeneity on local

wage inequality. The second line is the impact of employer heterogeneity on local wage inequality.

Finally, the third line captures the impact of sorting and the residuals.

36Labor incomes are already right-truncated in the ACS.
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A.3 Tables

Table A.1: City cluster-level summary statistics

Cluster # CZs Size Avg. wage St. dev. P10 P90 Rent Smallest CZ Largest CZ

1 100 8,518 16.61 0.31 11.33 23.48 8.41 Le Blanc La Roche-sur-Yon

2 53 15,924 17.34 0.34 11.35 25.38 9.58 Châteaudun Vannes

3 41 21,214 18.04 0.35 11.54 26.73 9.62 Commercy Metz

4 29 28,976 18.54 0.37 11.55 28.15 10.38 Tergnier Tours

5 24 36,931 19.44 0.38 11.79 29.88 10.48 Houdan Rouen

6 13 62,581 19.37 0.39 11.64 30.16 11.34 Wissembourg Bordeaux

7 19 50,164 20.33 0.41 11.75 32.48 11.62 Ambert Toulouse

8 8 101,150 21.43 0.43 11.92 34.61 13.96 Chinon Roissy

9 8 91,755 22.39 0.45 12.00 36.28 14.54 Étampes Lyon

10 2 924,781 27.63 0.52 12.53 46.09 22.25 Saclay Paris

The columns are: the cluster ID, the number of commuting zones, the average number of employed worker, the average wage, the
standard deviation of log wages, the 10th percentile of the wage distribution, the 90th percentile of the wage distribution, the rent per
meter square, the smallest commuting zone in the cluster, and the largest commuting zone in the cluster. All statistics are computed
at the CZ level and then averaged at the cluster.

Table A.2: The local returns to job switching

(1) (2) (3) (4) (5)

# jobs 0.013 0.054 0.016 0.009 0.012
(0.001) (0.002) (0.001) (0.001) (0.001)

# jobs × log size 0.375 0.742 0.318 0.333 0.346
(0.008) (0.012) (0.008) (0.008) (0.008)

City × year F.E. ✓
Occupation F.E. ✓
Worker slope F.E. ✓

Switch All Wage gain All All All
# Obs. 8,798,361 8,798,361 8,798,361 8,798,361 8,798,361
R2 0.886 0.889 0.887 0.890 0.887

Dependant variable: log hourly wage. The indepedent variable # jobs is defined in (5), and size
is the average number of employed workers per city in each city cluster. All regressions include:
worker F.E., location F.E., experience, and experience interacted with log city size. Standard
errors are clustered at the worker level. The coefficients on the second line are scaled to represent
the marginal effect of doubling city size.
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Table A.3: Job switching within and across commuting zones

All flows Flows with wage gain

Switching rate (%) 9.05 5.07

Within city (%) 93.6 94.2

Switchers’ wage growth (%) 3.25 17.1

City stayers (%) 3.28 16.7

City movers (%) 2.71 23.7

Days between jobs 69.7 69.7

City stayers 64.6 64.6

City movers 144.5 144.5

Statistics computed at the quarterly frequency. Switching rate computed across
jobs, where a job is an establishment × 4-digit occupation. Second column
restricts the sample to job switches associated with positive wage growth. City
stayers and movers defined based on their commuting zone of residence.
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A.4 Figures

Figure A.1: Wage distribution by commuting zone

(a) Nominal wage
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(b) Real wage
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Both panels display the city size elasticity of wage deciles. Let wqℓ denotes the average wage in the qth decile of the wage
distribution in location ℓ. Let mℓ denote location ℓ’s size. The city elasticities are estimated by logwqℓ = αq + βq logmℓ + uqℓ.
Panel (a) plots the β̂q estimated on nominal wages. Panel (b) plots the β̂q estimated on real wages. Real wages are computed
as nominal wages deflated by a citywide Cobb-Douglas price index with a housing expenditure share of 0.3. The blue circles
depict the estimates on the entire sample. The orange rectangles are estimated on workers living in different commuting
zones than their birthplace. The gey triangles are estimated on wages deflated by a municipality housing price index. The
municipality housing price index is computed based on the exposure of workers in a particular decile across municipalities.
Specifically, pmℓq =

∑
m∈ℓ ω

q
ℓmpm, where ωqℓm is the fraction of workers in decile q and CZ ℓ that lives in municipality m, and

pm is the average housing price in that municipality. The municipality price index is then (pmℓq)
α. The vertical bars are 95th

confidence intervals.
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Figure A.2: Wage distributions by US state

(a) Nominal wage
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Data source: American Community Survey (wages and rent) and the Bureau of Labor Statistics (employment by state) –see
Section A.1.2. Both panels display the state size elasticity of wage deciles. Let wqℓ denotes the average wage in the qth decile of
the wage distribution in state ℓ. Letmℓ denote state ℓ’s size. The state elasticities are estimated by logwqℓ = αq+βq logmℓ+uqℓ.
Panel (a) plots the β̂q estimated on nominal wages. Panel (b) plots the β̂q estimated on real wages. Real wages are computed
as nominal wages deflated by a statewide Cobb-Douglas price index with a housing expenditure share of 0.35
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Figure A.3: Local share of low- and high-paying jobs

(a) Low-paying jobs
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Left-panel depicts the job shares (blue rectangles) and employment shares (orange circles) of low-paying jobs in each city.
Right-panel reproduces the exercice for high-paying jobs. Low- and high-paying jobs are defined as jobs belonging in the bottom
and top 10% of the national job fixed effect distribution, unweighted and employment-weighted for the job and employment
shares respectively. The job fixed effects are obtained from (1).

Figure A.4: Spatial distribution of job wage premia
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Panel displays the local job shares of jobs in the xth decile of the aggregate job fixed effect distribution. The job fixed effects
are obtained from (1).
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Figure A.5: Counterfactual average wage premia
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Panel displays the counterfactual average job fixed in each city cluster when only the bottom x% of the aggregate job fixed
effect distribution are included. The average job fixed effect is normalized to zero in the smallest location for all counterfactuals.
The job fixed effects are obtained from (1).

Figure A.6: The role of occupation, industry, and establishment on spatial wage inequality

(a) Between-city decomposition
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(b) Within-city decomposition
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Panel (a) displays the decomposition Eℓ[ψj ] = Eℓ[ϕι(j)] + Eℓ[δo(j)] + Eℓ[ψf (j)]. The grey area represents Eℓ[ϕι(j)], the
orange area Eℓ[δo(j)], and the blue area Eℓ[ψf (j)]. Panel (b) plots the decomposition of the within-city job fixed effect
variance. The grey area plots the dispersion in industry FE, Varℓ[ϕι(j)] + Cov[δo(j), ϕι(j)] + Cov[ϕι(j), ψf (j)]. The orange area
plots the dispersion in occupation FE, Varℓ[δo(j)] + Cov[δo(j), ϕι(j)] + Cov[δo(j), ψf (j)]. The blue area plots the remainder,
Varℓ[ψf(j)] + Varℓ[νj ] + Cov[ψf(j), ϕι(j)] + Cov[δo(j), ψf (j)]. The fixed effects are obtained from (1) and (4).
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Figure A.7: The role of sorting for within-city wage inequality
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Figure displays the first-order approximation of the variance decomposition (27). Each marker is a city group. The orange

area represents the worker component, Varℓ[ψit] + ρ(ψit, γit)(Varℓ[ψit] − Var[ψit])
(

Sd[γit]
Sd[ψit]

)
. The blue area represents the

employer contribution, Varℓ[γit] + ρ(ψit, γit) (Varℓ[γit]− Var[γit])
(

Sd[ψit]
Sd[γit]

)
. The red area represents the sorting component,

ρℓ(ψit, γit)Sd[ψit]Sd[γit]. The grey area represents the approximation residuals. The job fixed effects are obtained from (1).

Figure A.8: The local returns to experience
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Figure plots the returns to experience parameters {βℓ}Lℓ=1 in (6). The vertical bars represent 95th confidence intervals. Standard
errors are clustered at the individual level.
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Figure A.9: The local returns to job switching by occupation
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Both panels display point estimates of the returns to job switching by occupation. Specifically, I estimate logwit = FEt+FEi+
FEo(i,t) + αℓ(i,t) + βbxit + βsxit log sizeℓ(i,t) + γbo(i,t)Jit + γso(i,t)Jit log sizeℓ(i,t), where most variables are defined in (6), sizeℓ is
the average city size in cluster ℓ, and o(i, t) is the occupation of i at t. The left and right-panel display the point estimates of
γbo and γso . Standard errors are clustered at the individual level.

Figure A.10: The local returns to job switching by wage quartile
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Both panels display point estimates of the returns to job switching by wage quartile. Specifically, I estimate logwit =
FEt + FEi + αℓ(i,t),q(i,t) + βbxit + βsxitsizeℓ(i,t) + γbq(i,t)zit + γsq(i,t)zitsizeℓ(i,t), where most variables are defined in (6), sizeℓ is
the average city size in cluster ℓ, and q(i, t) is the within-city wage quartile of i at t. The left and right-panel display the point
estimates of γbq and γsq . Standard errors are clustered at the individual level.
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Figure A.11: Estimating the local returns to job switching with AKM fixed effects

(a) All switch
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Blue rectangles display the estimates from (6), on the left using all switches and on the right using switches associated with
wage growth. Orange circles display the average change in AKM fixed effect for switchers, on the left using all switches, and on
the right using switches for which the change in fixed effect is positive. Job fixed effects estimated from (1).

Figure A.12: The consequences of startup premia, job ladders, and experience on local wages
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Left panel decomposes the between-city average wage gap net of worker heterogeneity, Eℓ[logwit − αJL
i ]. The orange area

depicts δJLℓ . The blue area represents λJL
ℓ Eℓ[Jit]. The grey area shows βJL

ℓ Eℓ[xit]. Right panel decomposes the between-city
average wage growth gap, Eℓ[∆t logwit] = βJL

ℓ Eℓ[∆txit] + E[λJL
ℓ ]Eℓ[J2Jit] + (λJL

ℓ − E[λJL
ℓ ])Eℓ[J2Jit]. The grey area depicts

βJL
ℓ Eℓ[∆txit]. The blue area represents (λJL

ℓ − E[λJL
ℓ ])Eℓ[J2Jit]. The red area shows E[λJL

ℓ ]Eℓ[J2Jit]. In both decompositions,
all variables are expressed relative to the smallest location. Point estimates obtained from (6).
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B A spatial theory of wage premia

B.1 Local supply curves

In location ℓ, the relative measure of unemployed and employed workers are such that the flow

out of unemployment equates the flow into unemployment: uℓ/eℓ = δ/λu. Consistency requires

uℓ + eℓ = mℓ, and therefore uℓ = δ/(λu + δ)mℓ and eℓ = λu/(λu + δ)mℓ.

The employment distribution, Gℓ, is characterized by the within-city worker flows across jobs. In

steady state, the flow of workers into the interval [wℓ, w) has to be equal to the flow of workers out of

the same interval, or λuFℓ(w)uℓ = [δℓ+λ
eF̄ℓ(w)]eℓGℓ(w). Solving for Gℓ(w) and using uℓ/eℓ = δ/λu

yields (12).

The labor supply curve is defined as the number of employed worker at wage w per wage offer,

or limε→0− [Gℓ(w)−Gℓ(w − ε)]/[Fℓ(w)− Fℓ(w − ε)]eℓ/Mℓ. Taking the limit returns

nℓ(w) =
eℓ
Mℓ

1 + k[
1 + kF̄ℓ(w)

] [
1 + kF̄ℓ(w−)

] ,
where Fℓ(w

−) = limε→0− F (w − ε). This is equivalent to equation (13) under a continuous wage

offer distribution.

B.2 Reservation wage

Suppose for simplicity that Fℓ admits a density. Differentiate the HJB of employed workers (11)

with respect to w, integrate it back to w, and use Vℓ(wℓ) = U to obtain

Vℓ(w) = U +
Aℓ
Pℓ

∫ w

wℓ

1

ρ+ δ + λeF̄ℓ(w′)
dw′.

Combine this expression into (9) and (11) to get

ρU =
Aℓ
Pℓ

(
b+ λu

∫
wℓ

F̄ℓ(w)

ρ+ δ + λeF̄ℓ(w)
dw

)
, (28)

ρVℓ(wℓ) =
Aℓ
Pℓ

(
wℓ + λe

∫
wℓ

F̄ℓ(w)

ρ+ δ + λeF̄ℓ(w)
dw

)
= ρU. (29)

Equating both equations and solving for wℓ yield (14).

B.3 Proof of Lemma 1

Nominal Let HF (x) be the operator defined by

HF (x) =

∫
x

F̄ (w)

ρ+ δ + λeF̄ (w)
dw,
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and JF (x) be defined by JF (x) = x− b− (λu − λe)HF (x). The reservation wage solves JFℓ(wℓ) = 0.

H satisfies two properties. First, x→ HF (x) is decreasing. Second, F1 ≻FOSD F2 implies HF1(x) >

HF2(x) for any x. These properties imply that JF : x→ JF (x) is increasing and F → JF (x) is weakly

decreasing, strictly decreasing if λu > λe. Therefore, if F1 ≻FOSD F2, HF1(w2) ≤ HF2(w2) = 0, and

it must be that w1 ≥ w2, strictly if λu > λe.

Real From (29), the lifetime utility of a worker employed at the reservation wage is

ρVℓ(wℓ) =
wℓAℓ
Pℓ

(
1 +

λeHF (wℓ)

b+ (λu − λe)HF (wℓ)

)
,

where I have also used (14). We know that HF is (strictly) increasing in F in the FOSD sense, and

therefore so must λeHF /(b+[λu−λe]HF ). However, indifference (10) requires Vℓ(wℓ) = Ū = Vℓ′(wℓ′).

Therefore, wℓAℓ/Pℓ is decreasing in Fℓ in the FOSD sense.

B.4 Local wage offer distributions

I derive here the wage equation (18). This section exactly follows Burdett and Mortensen (1998). I

first show that, for any spatial allocation of employers {Γℓ}ℓ, there cannot be holes or mass points

in the local wage offer distributions.

To start, suppose there is a hole in Fℓ between x ≥ wℓ and x̄ ≤ w̄ℓ. We have Fℓ(x) ≤ Fℓ(x̄),

where the inequality is strict if there is a mass point at either x or x̄. Therefore nℓ(x) ≤ nℓ(w̄).

However, by offering any wage in (x, x̄), an employer that used to post wage x̄ would keep the same

size while lowering its wage bill. This constitutes a profitable deviation, and therefore there cannot

be holes in Fℓ.

Suppose now that there is a mass point at w ∈ [wℓ, w̄ℓ]. Take an employer with productivity

z that offers wage w, and consider the deviation w + ε for ε > 0 but small. For ε→ 0+, we have

nℓ(w + ε) > nℓ(w) since there is a mass point at w, but w + ε→ w. Hence, the profit under wage

offer w and w + ε are respectively (z − w)nℓ(w) < (z − w − ε)nℓ(w + ε), and offering wage w + ε is

a profitable deviation. This rules out mass point in Fℓ.

I now show that Fℓ[wℓ(z)] = Γℓ(z). Since nℓ is strictly increasing in w, πℓ is continuously

differentiable and strictly supermodular in (z, w). Directly applying Theorem 2.8.5. in Topkis

(1998), it follows that w is strictly increasing in z. Given the ordering of wages, it must be that

F [wℓ(z)] = Γℓ(z).

Finally, I derive the wage equation (18). Since there are no mass point in the wage offer

distribution, we can take the first-order conditions of (20) with respect to w for any z ∈ supp Γℓ,

(z − w)
n′ℓ(w)

nℓ(w)
= 1.
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Evaluating this equation at wℓ(z) and using the change of variable nℓ(z) = nℓ[wℓ(z)] yields

w′
ℓ(z) =

n′ℓ(z)

nℓ(z)
(z − wℓ(z)) . (30)

Integrating this ODE with respect to w and using the boundary condition wℓ(zℓ) = wℓ returrns

wℓ(z) = wℓ

(
nℓ(zℓ)

nℓ(z)

)
+

∫ z

zℓ

ζ

(
n′ℓ(ζ)

nℓ(z)

)
dζ, ∀z ∈ suppΓℓ. (31)

Since
∫ z
zℓ
n′ℓ(t)dt = nℓ(z)− nℓ(zℓ), we have

wℓ(z) = wℓ

(
nℓ(zℓ)

nℓ(z)

)
+

(
1− nℓ(zℓ)

nℓ(z)

)∫ z

zℓ

t

(
n′ℓ(t)∫ z

zℓ
n′ℓ(x)dx

)
dt,

which corresponds to (18).

B.5 Proof of Proposition 2

FOSD ordering (2.1) We first show that Γℓ ≻FOSD Γℓ′ implies Fℓ ≻FOSD Fℓ′ . Let w
q
ℓ denote the

q-th quantile of the wage offer distribution in ℓ, q = Fℓ(w
q
ℓ ). Likewise, let z

q
ℓ denote the firm that

offers the q-th quantile of the wage offer distribution in ℓ, wℓ(z
q
ℓ ) = wqℓ . Combining the two and

using the rank preserving property of Fℓ returns q = Fℓ[wℓ(z
q
ℓ )] = Γℓ(z

q
ℓ ), or z

q
ℓ = Γ−1

ℓ (q). Using the

wage expression (31), the q-th quantile of the wage offer distribution is

wqℓ = wℓ[Γ
−1
ℓ (q)] = wℓ

(
1 + k(1− q)

1 + k

)2

+

∫ q

0
Γ−1
ℓ (u)

2k[1 + k(1− q)]2

[1 + k(1− u)]3
du, (32)

where the above expression uses the fact that employment size (net of market tightness) is constant

across space given a rank on the ladder. Fℓ ≻FOSD Fℓ′ follows from (32) using a guess-and-verify.

Guess that Fℓ ≻FOSD Fℓ′ . Proposition 1 implies wℓ ≥ wℓ′ . Meanwhile, Γ−1
ℓ (u) ≥ Γ−1

ℓ′ (u) for all

u, and strictly for some. Hence, wqℓ ≥ wqℓ′ for all q, and strictly for some. Finally, since Gℓ is a

monotonically increasing function on Fℓ, Gℓ ≻ Gℓ′ .

Inequality (2.2) We first prove that w̄ℓ/wℓ is increasing in Γℓ when λ
u − λe ≥ 0 is small. When

λu = λe, we have wℓ = b ⊥ ℓ, and wqℓ/wℓ increasing in Γℓ for all q follows from Proposition 2.1. In

addition, wℓ is continuous in λ
u − λe and wqℓ is independent of λu. Hence, wqℓ/wℓ is increasing in Γℓ

for λu − λe not too large. This holds for w̄ℓ = w1
ℓ .

Second, we show that wqℓ − wℓ is increasing in Γℓ. Let ∆q
ℓℓ′ ≡ wqℓ′ − w′

ℓ − (wqℓ′ − wℓ′) be the

difference in quantile q-to-bottom wage gap between city ℓ and ℓ′. Using (32), this difference writes

∆q
ℓℓ′ = (wℓ − wℓ′)

(
1 + k(1− q)

1 + k

)2

+

∫ q

0

(
Γ−1
ℓ (u)− Γ−1

ℓ′ (u)
) 2k[1 + k(1− q)]2

[1 + k(1− u)]3
du
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If Γℓ ≻ Γℓ′ , this implies wℓ ≥ wℓ′ and Γ−1
ℓ (u) > Γ−1

ℓ′ (u) for all q ∈ (0, 1), from which it follows that

∆q
ℓℓ′ > 0 for all q.

B.6 Proof of Proposition 3

This section solves for the local productivity distributions {Γℓ}Lℓ=1 given local market tightness

{θℓ}Lℓ=1. I focus my attention to cities in which there are both workers and firms, i.e. 0 < θℓ <∞.

The proof has five parts. First, I show that the support of the distribution is convex in each city

(Lemma B.2). I then prove that local job distributions are necessarily ranked in terms of FOSD

(Lemma B.3). Lemma B.4 continues by deriving the density of the productivity distributions.

Lemma B.5 proves the condition for the overlapping support.

Lemma B.1 (Envelope theorem).

The profit function πℓ(z) is continuously differentiable with π′ℓ(z) = nℓ(z)

Proof. Differentiability follows from the Envelope theorem. Then, π′ℓ(z) = nℓ(z). Since Fℓ has no

mass point (Section B.4), nℓ(z) is continuous, and πℓ ∈ C1.

Lemma B.2 (Convex support).

The support of the productivity distribution in each city is an interval.

Proof. Suppose not. That is, for some city ℓ, there exists at least one hole in Γℓ. Wlog, suppose

there is a unique hole, such that suppΓℓ = [zℓ, z]∪ [z+ε, z̄ℓ] for some ε > 0. The profit maximization

condition (20) then requires

1. πℓ(z
′) ≥ πℓ′(z

′) for all z′ ∈ [zℓ, z] and all cities ℓ′,

2. πℓ(z
′) < πℓ⋆(z

′) for all z′ ∈ (z, z + ε) and at least one city ℓ⋆,

3. πℓ(z
′) ≥ πℓ′(z

′) for all z′ ∈ [z + ε, z̄ℓ] and all cities ℓ′.

The first two conditions imply (i) πℓ(z) = πℓ⋆(z) and (ii) π′ℓ(z) < π′ℓ⋆(z). Since z → nℓ(z) is

constant outside the support of Γℓ and strictly increasing in it (see (17)), Lemma B.1 and (ii) implies

nℓ(z
′) = π′ℓ(z

′) < πℓ⋆(z
′) = nℓ⋆(z

′) for all z′ ∈ (z, z + ε). Together with (i), it then must be that

πℓ(z + ε) < πℓ⋆(z + ε), a contradiction.

Lemma B.3 (First order stochastic dominance ordering).

For two cities ℓ and ℓ′, θℓ < θℓ′ if and only if Γℓ ≻ Γℓ′.

Proof. I start by showing that θℓ < θℓ′ ⇒ Γℓ ≻ Γℓ′ . For the sake of contradiction, suppose that

there exists a set Z ⊆ [z, z̄] of positive measure satisfying the three following conditions:

1. minZ ≥ min(zℓ, zℓ′);

2. maxZ ≤ max(z̄ℓ, z̄ℓ′);

3. Γ̄ℓ′(z) ≥ Γ̄ℓ(z) for all z ∈ Z.
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The first two conditions are needed since, trivially, Γℓ(z) = Γℓ′(z) = 0 for all z < min(zℓ, zℓ′) and

Γ̄ℓ(z) = Γ̄ℓ′(z) = 0 for all z > max(z̄ℓ, z̄ℓ′). The third condition implies maxZ ≤ z̄ℓ′ .

Lemma B.1 and (17) implies

π′ℓ(z) =
1

θℓ

1 + k

[1 + kΓ̄ℓ(z)]2
≥ 1

θℓ

1 + k

[1 + kΓ̄ℓ′(z)]2
>

1

θℓ′

1 + k

[1 + kΓ̄ℓ′(z)]2
= π′ℓ′(z), (33)

for all z ∈ Z.

Suppose first that minZ ≥ zℓ′ , such that Z ⊆ supp Γℓ′ . In that case, profit maximization

(20) demands πℓ′(z) ≥ πℓ(z) for all z ∈ Z. If πℓ′(z) = πℓ(z) for any z ∈ Z, then (33) implies

πℓ′(z
′) < πℓ(z

′) for z′ ∈ B+(z) ⊂ Z, a contradiction.37 Hence, it must be that πℓ′(z) > πℓ(z) for all

z ∈ Z, and minZ ≥ z̄ℓ. The inequality (33) thus simplifies to

π′ℓ(z) =
1 + k

θℓ
>

1

θℓ′

1 + k

[1 + kΓ̄ℓ′(z)]2
= π′ℓ′(z),

for all z ∈ [z̄ℓ,maxZ]. Meanwhile, profit maximization (20) requires πℓ′(z̄ℓ) ≤ πℓ(z̄ℓ). Together,

these two inequalities imply πℓ′(z) < πℓ(z) for all z ∈ Z, which contradicts Z ⊆ supp Γℓ′ by profit

maximization.

Suppose then that minZ < zℓ′ , and therefore, minZ ≥ zℓ from the first condition on the

definition of Z. Then, for all z ∈ [minZ, zℓ′ ], (33) becomes

π′ℓ(z) =
1

θℓ

1 + k

[1 + kΓ̄ℓ(z)]2
>

1

θℓ′

1

1 + kΓ̄ℓ′(z)
= π′ℓ′(z). (34)

In addition, profit maximization (20) demands πℓ(z) ≥ πℓ′(z) for all z ∈ [minZ, zℓ′ ]. Together,

these inequalities imply πℓ(zℓ′) > πℓ′(zℓ′), a contradiction with profit maximization.

θℓ < θℓ′ ⇐ Γℓ ≻ Γℓ′ automatically follows. Suppose not θℓ < θℓ′ , i.e., θℓ ≥ θℓ′ . I show that

Γℓ ̸≻ Γℓ′ . If θℓ > θℓ′ , I have already shown that Γℓ′ ≻ Γℓ. If θℓ′ = θℓ, it must be that Γℓ′ = Γℓ almost

everywhere for other similar contradictions as above can be constructed.

Lemma B.4 (Local job density).

Define the functions µℓ : R+ 7→ R+ as the (employment-weighted) relative market tightness that

employers z faces in city ℓ,

µℓ(z) ≡ eℓ
√
θℓ∑

ℓ′∈L(z) eℓ′
√
θℓ′

for L(z) ≡ {ℓ′ : z ∈ [zℓ′ , z̄ℓ′ ]}.

Given {θℓ}Lℓ=1 and a vector of cutoffs {zℓ, z̄ℓ}Lℓ=1, the productivity distribution in ℓ is unique and

37Throughout the appendix, B(x) refers to an open ball around x, B+(x) an open ball to the right of x, and
similarly B−(x) to an open ball to the left of x.
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given by

dΓℓ(z) = 1{z ∈ [zℓ, z̄ℓ]}
(
M

Mℓ

)
µℓ(z)dΓ(z).

Proof. Consider the productivity set ZL = {z : L(z) = L}, for L some element of the power set of L.

ZL satisfies two properties. First, ZL is convex for all L ∈ P(L).38 Second, ∩L∈P(L)ZL = supp Γ.

Take first L ∈ {{1}, {2}, . . . , {L}}. Let ℓ denote the unique location in L. The feasibility

condition (8) requires MℓdΓℓ(z) =MdΓ(z) for all z ∈ ZL.

Take then L ∈ P(L)\{{1}, {2}, . . . , {L}}. Then, for all z ∈ ZL, profit maximization (20)

demands πℓ(z) = πℓ′(z) for all (ℓ, ℓ′) ∈ L. The convexity of ZL then implies π′ℓ(z) = nℓ(z) =

nℓ′(z) = πℓ′(z) for all (ℓ, ℓ
′) ∈ L and all z ∈ ZL. Differentiating that equality one more time with

respect to z yields

dΓℓ′(z)

dΓℓ(z)
=

√
θℓ
θℓ′
,

for any (ℓ, ℓ′) ∈ L and all z ∈ ZL. But feasibility (8) requires
∑

ℓ′∈LMℓ′dΓℓ′(z) = MdΓ(z), and

therefore

dΓℓ(z) =
1√
θℓ

MdΓ(z)∑
ℓ′∈L eℓ′

√
θℓ′
,

for all ℓ ∈ L and all z ∈ ZL.

Lemma B.5 (Overlapping supports).

Take two cities ℓ and ℓ′ so that θℓ < θℓ′ . Then, supp Γℓ ∩ supp Γℓ′ has positive measure if and only

if θℓ′ < (1 + k)2θℓ.

Proof. I first prove ⇐. Suppose θℓ′ < (1 + k)2θℓ. For the sake of contradiction, suppose also that

there is no overlap. Since θℓ < θℓ′ , Lemma B.3 implies z̄ℓ′ ≤ zℓ. Furthermore, profit maximization

(20) requires πℓ′(zℓ) ≤ πℓ(zℓ) and πℓ′(z) > πℓ(z) for z ∈ B−(z̄ℓ′). Hence, πℓ and πℓ′ must cross

at least once in [z̄ℓ′ , zℓ] and πℓ crosses πℓ′ from below; that is, there exists z⋆ ∈ [z̄ℓ′ , zℓ] so that

πℓ(z
⋆) = πℓ′(z

⋆) and π′ℓ(z) > π′ℓ′(z) for z ∈ B−(z⋆). By continuity (Lemma B.1), we therefore have

π′ℓ(z
⋆) ≥ π′ℓ′(z

⋆). Furthermore, it must be that Γℓ′(z
⋆) = 1. Combining these elements and using

Lemma B.1, we have

1

θℓ

1

1 + k
= nℓ(zℓ) = π′ℓ(z

⋆) ≥ π′ℓ′(z
⋆) = nℓ′(z̄ℓ′) =

1 + k

θℓ′
,

38Fix L ∈ P(L). Take (z, z′) ∈ ZL. We have λz + (1− λ)z′ ∈ ZL ⇐⇒ L(λz + (1− λ)z′) = L(z) = L(z′) = L. So
take ℓ ∈ L. We know (z, z′) ∈ [zℓ, z̄ℓ], and therefore λz + (1− λ)z′ ∈ [zℓ, z̄ℓ] for all λ ∈ (0, 1).
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where the first and last equality follows from nℓ and nℓ′ being constant outside of their respective

support. However, θℓ′ < (1 + k)2θℓ, a contradiction.

We now prove the other direction. For this, suppose not θℓ′ < (1 + k)2θℓ, or θℓ′ ≥ (1 + k)2θℓ.

We want to show that this implies no overlap. Hence, for the sake of contradiction, suppose that

there is overlap in the job distribution. Lemma B.2 then implies supp Γℓ ∩ supp Γℓ′ = [zℓ, z̄ℓ′ ]

with zℓ < z̄ℓ′ . Employers in [zℓ, z̄ℓ′ ] must be indifferent between the two cities, πℓ(z) = πℓ′(z) for all

z ∈ [zℓ, z̄ℓ′ ], and therefore π′ℓ(z) = π′ℓ′(z). By Lemma B.1, this must hold at zℓ, and therefore

1

θℓ

1

1 + k
= nℓ(zℓ) = π′ℓ(zℓ) = π′ℓ′(zℓ) = nℓ′(zℓ) =

1

θℓ′

1

(1 + kΓ̄ℓ′(zℓ))
2
.

However, θℓ′ ≥ (1+ k)2θℓ, and this equality cannot hold for any Γℓ′(zℓ) ∈ (0, 1), a contradiction.

B.7 Proof of Proposition 4

The proof of Proposition 4 is broken up in three lemmas. Lemma B.6 derives the expression for

the commercial housing prices that sustain the spatial job allocation. Lemma B.7 then shows that

tighter market must have higher prices and more employers. Lemma B.8 then concludes by proving

that larger cities have a tighter market. Lemma B.7 and Lemma B.8 are proved under λu = λe.

Since these lemmas are strict inequalities and the model is continuous in ζ, they also hold for

λu ≈ λe.

Lemma B.6 (Housing prices).

Fix θθθ and re-arrange cities so that θℓ is decreasing in ℓ. Then, the spatial job allocation is sustained

by a vector of housing prices {rℓ}Lℓ=1 that satisfies the difference equation

rℓ+1 = rℓ +
(
zℓ+1 − wℓ+1

)
nℓ+1(zℓ+1)− (zℓ − wℓ)nℓ(zℓ)−

∫ zℓ+1

zℓ

nℓ(ζ)dζ, (35)

subject to the boundary condition r1 =
(
M−

∑
ℓ>1Mℓ

H̄

)1/ϕ
.

Proof. I first prove (35). Fix city ℓ. Take the city ℓ′ such that θℓ′ > θℓ and there is no other third city

l so that θℓ′ > θl > θℓ. If the locations are inversely ordered by θℓ, such ℓ
′ exists for all ℓ ∈ {2, . . . , L}.

Lemma B.2, Lemma B.3, and feasibility (8) together imply that zℓ ∈ supp Γℓ′ . Profit maximization

(20) then requires πℓ(zℓ) = πℓ′(zℓ). Re-arranging: rℓ = (zℓ − wℓ)nℓ(zℓ)− πℓ′(zℓ). Meanwhile, the

fundamental theorem of calculus implies πℓ′(zℓ) = πℓ′(zℓ′) +
∫ zℓ
zℓ′
π′ℓ′(ζ)dζ = πℓ′(zℓ′) +

∫ zℓ
zℓ′
nℓ′(ζ)dζ

where the second equality follows from Lemma B.1. Using πℓ′(zℓ′) = (zℓ′ − wℓ′)nℓ′(zℓ′)− rℓ′ and

combining with the original expression yields (35). Housing market clearing in each location yields

rℓ =
(
Mℓ

H̄

)1/ϕ
. Feasibility requires

∑
ℓMℓ =M . The two expressions together generate the boundary

condition r1.
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Lemma B.7 (Mass of employers).

Suppose that λu = λe. Then, θℓ < θℓ′ ⇐⇒ rℓ > rℓ′ ⇐⇒ Mℓ > Mℓ′.

Proof. The second equivalence directly follows from rℓ = (Mℓ/H̄)1/ϕ, so we only need to focus on

the first. I first prove θℓ < θℓ′ ⇒ rℓ > rℓ′ . Take two cities ℓ and ℓ′ that are adjacent in the θθθ-space

with θℓ < θℓ′ . Lemma B.3 implies zℓ > zℓ′ . Since nℓ′ is strictly increasing, equation (35) implies

rℓ − rℓ′ > (zℓ − b)nℓ(zℓ)− (zℓ′ − b)nℓ′(zℓ′) > 0,

where I have also used wℓ = b when ζ = 1, and the second inequality follows from nℓ(zℓ) > nℓ′(zℓ′)

and minℓ zℓ > b by assumption.

I now prove θℓ < θℓ′ ⇐ rℓ > rℓ′ . Suppose not θℓ < θℓ′ , i.e., θℓ ≥ θℓ′ . If θℓ > θℓ′ , the previous

argument yields rℓ < rℓ′ . If θℓ = θℓ′ , then Lemma B.3 implies Γℓ = Γℓ′ , and equation (35) yields

rℓ = rℓ′ . Together, we thus have rℓ ≤ rℓ′ , i.e, not rℓ > rℓ′ .

Lemma B.8 (City ordering).

Suppose that λu = λe. Then, eℓ > eℓ′ ⇐⇒ θℓ < θℓ′.

Proof. I first show eℓ > eℓ′ ⇒ θℓ < θℓ′ . For the sake of contradiction, suppose that θℓ ≥ θℓ′ . Since

eℓ > eℓ′ , it must be that Mℓ > Mℓ′ , a contradiction with Lemma B.7.

I now turn to eℓ > eℓ′ ⇐ θℓ < θℓ′ . Suppose not eℓ > eℓ′ , i.e. eℓ ≤ eℓ′ . If eℓ < eℓ′ , the previous

argument implies θℓ > θℓ′ , i.e., not θℓ < θℓ′ . So suppose eℓ = eℓ′ . Then, θℓ/θℓ′ =Mℓ > Mℓ′ > 1 ⇐⇒
Mℓ > Mℓ′ , which also contradicts Lemma B.7.

B.8 A competitive spatial matching model

Consider a general spatial matching model with competitive labor markets. There is a measure

M of heterogeneous firms indexed by their productivity z distributed according to Γ. Firms use a

single input, labor. They face a decreasing returns to scale technology: R(z, n) = znρ. Decreasing

returns could arise due to span-of-control costs or love-for-variety across differentiated goods.39

There are L cities. Cities differ in their size, {mℓ}Lℓ=1, and their revenue TFP, {Tℓ}Lℓ=1. City size

can either be exogenous or endogenous (e.g., free entry, preference shocks, migration costs, etc.).

Likewise, local TFPs can either be exogenous or endogenous (e.g., productivity spillovers, market

access, etc.). Both local characteristics are treated as given by firms.

Labor markets are competitive and segmented by locations. The law of one price holds within

locations, and the local wage is denoted wℓ. Employers pay housing cost rℓ to produce in location ℓ.

The housing supply is Lℓ = L̄rχℓ .

39Decreasing returns to scale are required for the firm boundary to be well-defined in the absence of search frictions.
The model of Section 2 could be extended to allow for DRS without much consequences (see Bilal and Lhuillier, 2021).
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Employers solve

π(z) = max
ℓ,n

Tℓzn
ρ − wℓn− rℓ.

Their labor demand and optimal profits are

nℓ(z) =

(
Tℓzρ

wℓ

) 1
1−ρ

and π(z) = max
ℓ

κ1ψℓz
1

1−ρ − rℓ,

where κ1 ≡ (1− ρ)ρ
ρ

1−ρ is a parametric constant, and ψℓ summarizes the profitability of ℓ:

ψℓ ≡
(
Tℓ
wρℓ

) 1
1−ρ

.

The spatial allocation of firms is described by {Mℓ,Γℓ}Lℓ=1 for Mℓ the measure of employers and

Γℓ the local productivity distribution. As in the model of Section 2, the spatial allocation of firms

is determined by the profit condition (20) and the feasibility condition (8). Finally, labor market

clearing in every location demands

mℓ =Mℓ

∫
nℓ(z)dΓℓ(z) =Mℓ

(
Tℓρ

wℓ

) 1
1−ρ

E
[
z

1
1−ρ
]
. (36)

The allocation of firms across space is determined by the complementarity between firms’

productivity and local profitability, ψℓ. More productive firms have a higher willingness to pay to

access high local profitability. The profitability of a location depends in turn on its local revenue

TFP, and on the price of the inputs. Absent revenue TFP, productive firms thus sort across space to

access cheap labor. As a result, there is a negative correlation between the average firm productivity

and local wages. In equilibrium, large cities attract more employers, which are relatively more

productive, because they offer cheap labor.

The next proposition states this result formally.

Proposition B.1 (Spatial wage inequality in competitive matching models).

Suppose that revenue TFPs are homogeneous, Tℓ = 1. In any equilibrium,

◦ Employers are more productive in larger cities, and they are more of them: mℓ > mℓ′ implies

Mℓ > Mℓ′ and Eℓ[z] > Eℓ′ [z];
◦ Wages are lower in larger cities: mℓ > mℓ′ implies wℓ < wℓ′.

Proof. Suppose that TFPs are homogeneous, Tℓ = 1 for all ℓ. Thus, order cities by city size without

loss of generality, m1 < m2 < · · · < ML.
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Using the equilibrium condition for wages (36), local profitability rewrites

ψℓ ∝

 mℓ

MℓEℓ
[
z

1
1−ρ
]
ρ

=

(
ρ

wℓ

) ρ
1−ρ

,

where the constant of proportionally is a function of ρ.

The constant ψℓ is thus an equilibrium object that depends on the allocation of employers across

space. However, given a distribution of {ψℓ}Lℓ=1, the complementarity between (ψℓ, z) implies that

there is pure positive assortative matching between ψψψ and zzz — or pure negative assortative matching

between www and zzz (Topkis, 1998).

With these initial remarks, we start by proving the second part of the proposition. For the sake

of contradiction, suppose that wages are increasing in city size, w1 < w2 < · · · < wL. From the

expression for wages, it must then be that

Mℓ+1

Mℓ

Eℓ+1

[
z

1
1−ρ
]

Eℓ
[
z

1
1−ρ
] >

mℓ+1

mℓ
> 1. (37)

That is, MℓEℓ[z] must be increasing in mℓ. We also know from Topkis (1998) that firms sort in

the opposite direction of wℓ. Hence, Eℓ[z
1

1−ρ ] is decreasing in mℓ. A necessary condition for (37) is

therefore that Mℓ is increasing in mℓ.

In any equilibrium with pure sorting, marginal firms must be indifferent between two locations.

Since wℓ is increasing in mℓ and firms sort in the opposite direction of wℓ, this indifference is

πℓ(zℓ) = πℓ+1(z̄ℓ+1). Using the expression for profits and housing prices, the indifference condition

reads

κ2 [ψℓ − ψℓ+1] z
1

1−ρ
ℓ =

(
Mℓ

L̄

)1/χ

−
(
Mℓ+1

L̄

)1/χ

> 0,

for κ2 > 0 a parametric constant. Therefore, Mℓ is decreasing in ℓ, and (37) does not hold –a

contradiction.

The first part of the proposition automatically follows from Topkis (1998).

C Extended model and estimation

C.1 Quantitative model

Let K denote the scale of the model. The model is scale invariant but this will be needed to map

the model in the data since the empirical scale is unknown.
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Workers We start with the worker problem. The expected lifetime utility of a worker born in l

upon entry in the labor force is

Ul({ωℓ}Lℓ=1) = E
[∫

e−βκlℓtωℓtAℓtu(ct, ht)dt

]
,

where β ≡ ρ+ ξ is workers’ effective discount rate, and κlℓ is the migration cost from l to ℓ. Workers

are free to migrate as long as they are unemployed. Employed workers need to quit their jobs

to migrate.40 Together with the facts that the economy is in steady state and that idiosyncratic

preferences are time invariant, workers settle in a location upon their entry in the labor force and

never choose to migrate again.

The problem of workers can therefore be broken down in two stages. In the later stage, workers

are settled in location ℓ. They decide which jobs to accept and climb the local job ladder. The

HJB equations describing the discounted lifetime utility of an unemployed and employed worker in

location ℓ are

βUℓ = Kb+ λuℓ

∫
max{Vℓ(w)− Uℓ, 0}dFℓ(w),

βVℓ(w) = w + λeℓ

∫
max{Vℓ(w)− Uℓ, 0}dFℓ(w) + δ[Uℓ − Vℓ(w)].

These HJB equations are independent of workers’ taste shocks, and therefore, need not be equalized

across space. The job switching behaviors are identical to Section 2 and give rise to the same labor

supply curves.

In the earlier stage, workers decide where to settle given the expected lifetime utility of unem-

ployed workers in each location:

Ul(ωωω) = max
ℓ

κlℓωℓAℓUℓ
Pℓ

.

This location problem is very tractable due to three features. First, since the economy is in steady

state, the measure of people who live in ℓ upon entry is the same as the stationary measure of

people in ℓ. Second, the birth process implies that the measure of workers born in ℓ is the same as

the measure of people living in ℓ. Third, the Fréchet shocks smooth the discreteness of the location

choice. With these remarks in mind, let mlℓ denote the measure of workers born in l and who choose

to start their career in ℓ. The spatial allocation of new entrants is given by

mlℓ

mℓ
=

[κlℓAℓUℓ/Pℓ]
χ∑

ℓ′ [κlℓ′Aℓ′Uℓ′/Pℓ′ ]
χ
. (38)

Then, the total measure of people living in ℓ is mℓ =
∑

lmlℓ.

40I assume a homogeneous migration cost, κlℓ = κ1{ℓ ̸= l}. However, since the model is solved at the city-group
level, these migration costs have to be adjusted to reflect that there is more than one location per group. See
Section C.3 for more details.
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Search The derivations of the local labor supply curves and reservation wages follow Section B.1

and Section B.2 with the addition of exit shocks. The reservation wage thus reads

wℓ = Kb+ (λuℓ − λeℓ)

∫
wℓ

F̄ℓ(w)

ρ+ ξ + δ + λeℓF̄ℓ(w)
dw. (39)

The ins- and outs- of employment deterime the local measure of employed workers

uℓ =

(
δ + ξ

λuℓ + δ + ξ

)
mℓ. (40)

Likewise, the flows up the job ladder determine the distribution of wages amongst employed workers,

Gℓ(w) =
(δ + ξ)Fℓ(w)

δ + ξ + λuℓ F̄ℓ(w)
.

These three expressions make clear that it is the joint separation rate, δ̄ = δ + ξ, that matters for

the flows of workers across employment and jobs. I therefore define kℓ = λeℓ/δ̄ with a slight abuse of

notation.

Employers Employers solve (23) where c(v) = Kv1+γ/(1 + γ). The vacancy optimality condition

demands

(zTℓ − wℓ(z))nℓ[wℓ(z)] = Kvℓ(z)
γ . (41)

Potential profits in location ℓ after maximizing out vacancies are

πℓ(zTℓ) = max
w

cK
− 1
γ [(zTℓ − w)nℓ(w)]

1
c − rℓ,

for c ≡ γ/(1 + γ) a constant. Given the spatial allocation of employers {Γℓ}ℓ, the solution to the

employer’s problem can be recasted as a system of two differential equations. For employers with

z ∈ supp Γℓ, the wage optimality condition is

n′ℓ[wℓ(z)]

nℓ[wℓ(z)]
(zTℓ − wℓ(z)) =

2kℓdFℓ[wℓ(z)]

1 + kℓF̄ℓ[wℓ(z)]
(zTℓ − wℓ(z)) = 1.

Within a city, wages are increasing in productivity. Accordingly, letting Υℓ(z) ≡ Fℓ[wℓ(z)] denote

the rank of an employer in the local wage offer distribution, we obtain

Υℓ(z) =
Mℓ

Vℓ

∫ z

zℓ

vℓ(x)dΓℓ(x).
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The number of workers hired by employer z in ℓ is then

nℓ(z) = nℓ[wℓ(z), vℓ(z)] =
(1 + kℓ)eℓ

[1 + kℓ(1−Υℓ(z))]2
vℓ(z)

Vℓ
. (42)

With endogenous vacancies, Υℓ(z) ̸= Γℓ(z). Using Υℓ(z)
′ = dFℓ[wℓ(z)]w

′
ℓ(z), the wage optimality

rewrites

w′
ℓ(z) =

2kℓdΥℓ(z)

1 + kℓῩℓ(z)
[zTℓ − wℓ(z)]. (43)

Given Υℓ and the boundary condition wℓ(zℓ) = wℓ, (43) is an ODE that yields wℓ(z). Meanwhile, the

expression for Υℓ(z) implies dΥℓ(z) =Mℓvℓ(z)dΓℓ(z)/Vℓ. Used in the vacancy optimality condition,

we obtain a second differential equation:

Υ′
ℓ(z) =

Mℓ

Vℓ

[(
zTℓ − wℓ(z)

K

)
nℓ(z)

] 1
γ

Γ′
ℓ(z). (44)

Given the condition Υℓ(zℓ) = 0 and wℓ(z), (44) yields Υℓ(z).

The local productivity distributions are given by the local profit opportunities, πℓ, together with

the employers’ idiosyncratic costs. The inverse dispersion in the entry cost is ϑ/K. Given their

Gumbel distribution, the probability that a firm with productivity z produces in city ℓ is

Ωℓ(z) =
eϑπℓ(zTℓ)/K∑

ℓ′ gℓ′e
ϑπℓ′ (zTℓ′ )/K

. (45)

The local productivity distribution in city ℓ is then

Γℓ(z) =
M

Mℓ

∫ z

Ωℓ(x)dΓ(x) ⇐⇒ dΓℓ(z) =
M

Mℓ
Ωℓ(z)dΓ(z), (46)

and the mass of firm in city ℓ is

Mℓ =M

∫
Ωℓ(x)dΓ(x). (47)

The idiosyncratic entry costs ensure full support of the local productivity distribution, so that the

boundary condition to (45) is Γℓ(z) = 0.

Frictions The contact rates are given by the local matching function:

λuℓ = µ

(
Vℓ

uℓ + ζeℓ

)ξ
. (48)
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Aggregate prices There are three sets of aggregate quantities. The reservation wages {wℓ}Lℓ=1

are given by (14). Commercial housing prices clear the commercial housing market:

α

pℓ
(uℓbK + eℓEℓ[w]) = L̄pθℓ . (49)

The residential housing prices clear the residential housing market:

Mℓ = H̄(rℓ/K)ϕ, (50)

where the housing supply has been scaled by K, Hℓ = H̄(rℓ/K)ϕ.

Definition C.1 (Equilibrium).

An equilibrium is a collection of size policy functions, nnn(z), wage policy functions, www(z), vacancy

policy functions, vvv(z), employer-rank distributions, ΥΥΥ(z), productivity distribution, ΓΓΓ(z), residential

and commercial housing prices, ppp and rrr, reservation wages, www, contact rates, λuλuλu and λeλeλe, vacancy

and employer measures, VVV and MMM , spatial distribution of workers, uuu and eee, so that:

1. The wage, employer-rank and productivity distributions satisfy the differential equations (43),

(44) and (46), subject to the appropriate boundary conditions and the spatial allocation of

employers ΩΩΩ(z) given by (45);

2. The vacancy and size policy functions satisfy (41) and (42);

3. The mass of vacancy and employers are given by (22) and (47);

4. The mass of unemployed and employed workers are given by (40) and eℓ = mℓ − uℓ;

5. The contact rates are given by (48);

6. The reservation wages are given by (39);

7. The residential housing prices follows (49) and (50).

C.2 Proof of Proposition 5

Frictions The average UE rate, average EU rate, and location-specific average EE rate identifies

the search frictions. First, the EU rate equates δ. Second, the location-specific average EE rates are

EEℓ = λeℓ

∫
F̄ℓ(w)dGℓ(w) = δ

[(
1 +

1

kℓ

)
log (1 + kℓ)− 1

]
.

The right-hand side is monotonically increasing in kℓ. Therefore, kℓ = h(ÊEℓ), for h the inverse of

the above mapping. But kℓ = ζλuℓ /δ, and ζλ
u
ℓ = δh(ÊEℓ). Third and last, the location-specific UE

rate is λuℓ . Accordingly, the average UE rate is

UE =

∑
ℓ uℓλ

u
ℓ∑

ℓ uℓ
=

1

ζ

1∑
ℓ

(
1
ζλuℓ

)
eℓ
E

,
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which follows from uℓ = δ/(δ + λuℓ )mℓ and mℓ = uℓ + eℓ = (λuℓ + δ)eℓ/δ. In the denominator of the

second term, eℓ/E refers to the employment share of location ℓ with E =
∑

ℓ eℓ. The denominator

is therefore the employment-weighted mean of 1/ζλuℓ , which we know. The above expression thus

identifies ζ. Given ζ, we separately identify {λuℓ }ℓ.

Worker allocation The total mass of workers in ℓ reads mℓ = (λuℓ +δ)eℓ/λ
u
ℓ . Consistency imposes∑

ℓmℓ = 1. Together:

1

E
=
∑
ℓ

(
λuℓ + δ

λuℓ

)
eℓ
E
.

This expression identifies the aggregate mass of employed workers. We can then recover the

location-specific measure of employed and unemployed workers via

eℓ =
(eℓ
E

)
E ; uℓ =

(
δ

λuℓ

)
eℓ ; mℓ = uℓ + eℓ.

We treat the spatial allocation of workers as given for now, and later show that any allocation can

be rationalized by local amenities.

Unemployment insurance The UI rate is identified from the aggregate replacement rate. The

location-specific replacement rate is REℓ = Kb/E[wℓ]. The aggregate replacement rate is therefore

RE =

∑
ℓ

(
Kb

E[wℓ]

)
eℓ∑

ℓ eℓ
.

Inverting this expression identifies Kb.

Employers Let j denote an employer in the sample. For each employer, we observe the wage

it offers, wj , its size, nj , and its location, ℓj . From employers’ location, we can compute the

measure of firms in every location. Consistency indeed requires that the number of workers hired

in each location equates the number of employed workers, MℓEℓ[nj ] = eℓ holds. The average size

of employers relative to the measure of employed workers thus identifies the number of employers:

Mℓ = eℓ/Eℓ[nj ]. The total measure of employers follows M =
∑

ℓmℓ.

Then, we can recover the productivity and vacancy of each employer from its size and wage:

1. Compute employers’ rank in the local wage distribution, Gj .

2. Invert (12) to back out employers’ rank in the wage offer distribution;

Fj =
(1 + kℓ)Gj
1 + kℓGj

.
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3. Compute the number of workers per vacancy from employers’ rank:

ηj =
(1 + kℓ)eℓ

[1 + kℓ(1− Fj)]2
.

4. Compute employers’ vacancy share from their size: vj/Vℓj = nj/ηj .

5. Invert the wage optimality condition to identifies employers’ productivity:

zjTℓj ≡ ζj = wj +

(
1 + kℓ(1− Fj)

2kℓ

)
∂w

∂F

∣∣∣∣
w=wj

.

In practice, I approximate w → Fℓ with a spline and use the approximation to compute ∂w/∂F .

Figure C.13 shows the quality of the spline approximation for the cities of Lens and Paris. Figure C.14

presents the distribution of wages and estimated MPLs for Paris and Lens. The MPL distributions

are more dispersed with a thicker right tail than the wage distributions.

Given data on vacancy shares, the vacancy cost elasticity is identified the vacancy optimality

condition. Equation (41) indeed implies

γ =

√∑
ℓ eℓVarℓ[log ((ζj − wj)ηj)]∑

ℓ eℓVarℓ[log
vj
Vℓ
]

. (51)

Given an estimate for γ, the measure of vacancy in each location is then recovered as a location-

specific residual from the optimality condition:

(1 + γ) log Vℓ + logK = Eℓ[log(ζj − wj)ηj ]− γEℓ
[
log

vj
Vℓ

]
.

From (45), the log probability that an employer with total productivity ζ produces in ℓ is

log Ωζℓ (ζ) = ϑπℓ(ζ)− log
∑
ℓ′

eϑπℓ′ (ζTℓ′/Tℓ) ≈ ϑπℓ(ζ) +H(ζ), (52)

where H(ζ) is some location-independent function and the approximation is exact when there are no

dispersion in TFP, Tℓ′ = Tℓ for all ℓ. According to (52), projecting employers’ location probabilities

onto the local profit opportunities while flexibly controlling for employers’ total productivity identifies

ϑ. The left-hand side is known from employers’ productivity and their location choice. Given the

parameters already identifies, realized profits can be computed

πj = πℓj (ζj) = (ζj − wj)nj − c(vj)− rℓj .

In practice, I estimate (52) with three modifications. First, I instrument local profit opportunities

with employers’ wage to reduce measurement errors. The instrument is relevant since, within a

city, wages, productivity, and profits are all monotonic functions of each other. The instrument
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satisfies the exclusion restriction because wages are raw data. Second, I cluster employers in groups

of MPL within cities and replace H(ζ) with a group fixed effect. I use five groups per city. Third,

to account for possible dispersion in TFP –or other unobserved local characteristics that affect

employers’ location choice– I introduce location fixed effects. Combining these three modifications,

I estimate

log Ωqℓ = FEℓ + FEq + βπqℓ + uℓq, (53)

where q is a group, Ωqℓ is the share of firms q in ℓ, and πqℓ is the average profits of employers in

group q in location ℓ. I estimate (53) with 2SLS, instrumenting πqℓ by the average wage offered by

employer in group q in location ℓ. Figure C.15 shows the first-stage, reduced-form, and second-stage

of the IV procedure in the data. The markers are the data, and the lines the linear fit.

As explained in the main text, to account for the possibility that the TFP differentials are not

entirely soaked up by the location fixed effects, as well as the measurement error introduced by the

discretization, I replicate (53) in the model. I then set ϑ to match the 2SLS coefficient obtained in

the data.

Matching function The matching function (48) implies

log λuℓ = logµ+ ψ log

(
Vℓ

uℓ + ζeℓ

)
+ uℓ, (54)

for ϵℓ some measurement error. Estimating (54) by OLS given our estimates of {λuℓ , Vℓ, uℓ, eℓ}Lℓ=1

and ζ identifies the matching function parameters (µ, ψ).

Housing supply The residential housing market clearing condition reads L̄pθℓ = αIℓ/pℓ, or

log pℓ =

(
1

1 + θ

)
log
(α
L̄

)
+

(
1

1 + θ

)
log Iℓ, (55)

where Iℓ = uℓKb+eℓE[wℓ] are total expenditures in ℓ. Accordingly, given data on residential housing

prices, estimating the above relationship by OLS identifies {L̄, θ}.
Turning to the commercial housing supply parameters, commercial housing market clearing

demands H̄(rℓ/K)ϕ = mℓ, or

log rℓ = logK − 1

ϕ
log H̄ +

1

ϕ
logMℓ. (56)

Estimating (56) by OLS identifies ϕ and a bundle of (K, H̄). Figure C.16 shows the fit of the

model with the data. Although simple, the model covers 88% and 93% of the empirical variation in

residential and commercial housing prices.
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Worker preferences We conclude with the identification of worker preferences, (α,κκκ,AAA). The

Cobb-Douglas parameter α equates the aggregate housing expenditure share.

The bilateral flows of workers born in l and working in ℓ relative to the number of stayers identify

the migration costs given the dispersion in preferences:

mlℓ

mll

mℓl

mℓℓ
=

(
κlℓ
κll

κℓl
κℓℓ

)χ
.

Once assumed that migration costs are uniform across space and scaled to reflect the presence of

multiple locations within city groups (see Section C.3), the above equation simplifies to

mlℓ

mll

mℓl

mℓℓ
= glgℓ

(
κ2χ

[1 + (gl − 1)κχ][1 + (gℓ − 1)κχ]

)
, ∀ℓ ̸= l,

where gℓ is the number of locations in city group ℓ.

Finally, amenities are identified from the location choice of workers. Equation (38), together

with mℓ =
∑

lmlℓ, imply

νℓ = mℓ

(∑
l

mlκ
χ
lℓ∑

ℓ′ κ
χ
lℓ′νℓ′

)−1

,

where νℓ ≡ (AℓUℓ/Pℓ)
χ. Given (κ, χ,mmm), the above equation identifies ννν up to a normalization. We

normalize mean amenities to unity. Given (χ,ννν), housing prices PPP , and the net present value of

unemployed’s lifetime earnings, UUU , we can invert ννν to obtain amenities. We compute unemployed’s

lifetime earnings from

βUℓ = Kb+ λuℓ

∫
wℓ

1− Fℓ(w)

β + δ + λe(1− Fℓ(w))
dw,

where all the elements on the right-hand side have already been identified. This conclude the proof.

C.3 Data

Wages I measure wages through the job fixed effects estimated in (1) on the panel-version of the

matched employer-employee dataset (see Section 1.1 and A.1). To be consistent with that model

and the facts documented in Section 1, I define the size of a job as the average number of workers

per job within each job cluster.41

Job flows Worker flows across jobs are also obtained from the panel-version of the matched

employer-employee dataset. To be consistent with the AKM model (1), I define switches as the

job-group level. That is, I set J2Jit = 1 if worker i (i) switches job cluster within 90 days, (ii)

41The fact that the clusters are employment weighted within cities mean that the total number of workers per
cluster is constant. However, the average number of workers per job in each cluster can still vary.
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that job switch takes place within the city of origin, and (iii) the switch is associated with a wage

increase.42

Young, educated workers are known to transition more frequently across jobs. They are also

known to be disproportionally present in large cities. I therefore residualize job flows to account for

this worker heterogeneity. Specifically, I estimate

J2Jit = αi + βait + γℓ(i,t) + uit,

where αi is a worker fixed effects, ait is a control for age, and γℓ is a location fixed effect. I then

define the local average job switching rate as the location fixed effect.

Housing prices I measure residential housing prices via rents. I obtain data on rents from the

“Carte des Loyers” (Rental Map), which I aggregate at the commuting zone level.

I do not have data on commercial housing prices. Rather, I suppose that the relative housing

prices are the same in the commercial and residential markets. I adjust the scale of the commercial

housing prices in two ways. First, I adjust them by the mean difference in housing prices between

both markets. Second, I adjust commercial housing prices by the average housing size in the

commercial market since employers do not face an intensive margin. Both statistics are obtained

from the Valeur Foncières.

I also adjust residential housing prices to capture the presence of worker heterogeneity in the

data. To do so, I extend the model to allow for skill heterogeneity. Suppose workers differ in their

skill, s, whose distribution in location ℓ is Φℓ. Employers cannot target their hiring to specific skills,

and skills shift wages proportionally: a worker with skill s employed at firm z in location ℓ earns

swℓ(z).

This extended model as two key properties. First, the AKM specification is well-specified, and

the worker fixed effects in (1) estimate s. Second, only the residential housing block of the model

is affected by worker heterogeneity. Specifically, residential housing expenditures in ℓ are now

pℓL
d
ℓ = αEℓ[s](uℓb+ eℓEℓ[w]). The market clearing condition (55) becomes

log pℓ =
1

1 + θ
log

α

L̄
+

1

1 + θ
log(uℓb+ eℓEℓ[w]) +

1

1 + θ
logEℓ[s]. (57)

Accordingly, we can estimate θ and L̄ while controlling for Eℓ[s] using the average worker fixed

effects in each location. Since this extension eventually only matters for residential housing prices, I

do not use elsewhere and revert to the original model without skill heterogeneity.s

Migration flows I obtain migration flows from the panel-version of the matched employer-

employee dataset. Specifically, I know workers’ birthplace and their current workplace, which allows

me to compute mlℓ for every pair of city clusters (l, ℓ).

42Alternatively, I could focus on switches associated with an increase in the job fixed effect. The two statistics are
closely aligned.
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Migration costs have to be adjusted to reflect the fact that the model is solved at the city-cluster

level. Migration costs indeed capture the cost to move away from your birthplace. However, absent

any adjustments, workers born in clusters with many locations would face a lower migration costs as

they could move freely across locations within a cluster. The adjustment can be derived by writing

down two models, one at the city level in which each city within a cluster is homogeneous, and

another model at the city-cluster level. There exists a unique adjustment to the migration costs in

the city-cluster model that render both models identical:

κlℓ =


(
1 + (gl − 1)κχ

gl

) 1
χ

if l = ℓ,

κ if l ̸= ℓ,

where gl is the number of locations in cluster l.

C.4 Figures

Figure C.13: Wage offer distributions
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Figure C.14: Wage and marginal products of labor distributions
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Figure C.15: Entry cost dispersion estimation
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Figure C.16: Housing prices
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Figure C.17: Local job switching rates
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Figure C.18: Labor market tightness by city

(a) Analytical framework
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Left panel shows the labor market tigtheness as defined in the theoretical model: θℓ = eℓ/Mℓ. The right panel shows
the labor market tightness in the quantitative model: θℓ = (uℓ + ζeℓ)/Vℓ. Aggregate vacancies are measured in the
data by comining employers’ size with their rank in the job ladder (see Section C.2).
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D Quantitative exercises

D.1 Figures

Figure D.19: Local wage distributions
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Let wℓq be the q-th quantile of city ℓ’s wage distribution,
and mℓ the city size. Estimate logwℓq = αq + βq logmℓ +
uℓq by OLS. The figure plots the estimated {βq}q, in
orange in the data and in blue in the model.

Figure D.20: Wage standard deviation

City size (log)

-7 -6 -5 -4 -3 -2

0.150

0.175

0.200

With local competition

Without local competition

Blue circles depict the equilibrium, within-city wage stan-
dard deviation. The orange rectangles show the counter-
factual wage standard deviations if employers were to price
using their average markdowns, wℓ(z) = zµ̄(z).
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Figure D.21: Markdowns distribution

(a) Employment-weighted
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Left-panel shows the (employment-weighted) average markdown by decile of (employment-weighted) productivity.
Right-panel shows in blue the unweighted average markdown (µ̄(z) = L1 ∑

ℓ µℓ(z)) by decile of (employment-weighted)
productivity. Orange line depicts the equilibrium markdown in a counterfactual economy with homogeneous locations.

Figure D.22: Search frictions and the spatial distribution of activity
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Figure D.23: The consequences of search frictions on workers
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Figure D.24: The consequences of search frictions on employers
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