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Abstract

The spatial concentration of talent is a robust pattern of modern economies. While the sorting of

individuals into cities begets regional disparities, it may benefit aggregate productivity by fostering human

capital accumulation. To study this equity-efficiency tradeoff, I propose a theory wherein individuals learn

from the other workers in their cities. Cities affect the stock of human capital by determining the frequency

at which heterogeneous workers meet. Learning complementarities determine the existence of a tradeoff

between productivity and spatial inequality. I estimate the model on French administrative data. I recover

learning complementarities from a local projection of future wages on present wages and the wages of nearby

individuals. I find that workers employed in relatively skill-dense cities experience faster wage growth, and

disproportionately so if they are skilled. I address endogeneity concerns by using skill-density variations

within firms across neighborhoods driven by past productivity shocks. The model explains two-thirds of

the between-city wage growth variance and gives rise to a steep tradeoff between aggregate human capital

and spatial inequality. I assess the implications of this tradeoff for the general equilibrium effects of moving

vouchers. I find that large vouchers are effective at reducing spatial disparities in human capital accumulation

at the cost of decreased aggregate efficiency.
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1 Introduction

Spatial inequalities are pervasive across the globe. Cities such as New York, Paris, and Tokyo have

become epicenters of talent, leaving remote regions deprived of such individuals. As workers exchange

ideas with, collaborate with, and potentially learn from their neighbors, the spatial concentration of

skills may have enduring effects on human capital accumulation while at the same time segregating

learning opportunities in a few cities. Concerned by such regional disparities, national governments

spend a sizable share of their budget every year to rebalance income across space. Yet, little is known

about the aggregate effects of these policies on human capital. How does the sorting of workers into

cities shape learning? To what extent are learning opportunities spatially concentrated, and how

much does their concentration amplify regional disparities? Can policies spur higher productivity in

conjunction with lower geographical inequalities?

This chaper offers answers to these questions with four contributions. First, I propose a theory

that sheds light on how the concentration of skills in space affects human capital accumulation.

Second, I estimate the impact of cities’ skill composition on wage growth using French administrative

data. Third, I use the estimated model to quantify the extent to which learning opportunities are

spatially segregated, and what are the consequences for spatial disparities and aggregate productivity.

Fourth, I quantify the tradeoff between spatial inequality and human capital accumulation by

evaluating the general equilibrium consequences of a large-scale moving voucher policy.

In the first part of the chaper, I propose a theory of learning across space. The structure is

an overlapping generation model with two key features. First, young workers are endowed with

heterogeneous skills, cities differ in their productivity, and skill and productivity are complements

in production. Second, young workers learn by randomly meeting other workers in their city. The

learning depends on which workers are engaged in the interaction. Importantly, I impose minimal

restrictions on the learning technology. Skilled individuals may disproportionately learn from

other skilled workers. In this case, within-skill learning complementarities dominate between-skill

complementarities. On the contrary, between-skill complementarities prevail if the marginal gains

from meeting a high-skill are decreasing in workers’ own skill. Individuals are forward-looking and

freely choose where to work to maximize their lifetime utility.

The sorting of workers in cities shapes the spatial distribution of learning opportunities, which

in turn may amplify the spatial concentration of skills. Holding constant future income, high-skill

workers sort into productive cities as these locations offer relatively higher wages. Yet, their location

decisions also reflect where the local learning opportunities are. When skilled workers agglomerate in

productive cities, individuals who learn relatively more from them view these locations as attractive

learning centers. The stronger the within-skill learning complementarities, the more skilled workers

gain over time from working next to other skilled individuals, and the further the learning motive

amplifies the spatial concentration of skills.

Spatial inequality feeds into the aggregate stock of human capital. The agglomeration of high-

skill next to each other increases the frequency at which they meet while reducing the opportunity

for low-skill to learn from them. Whether this segregation of opportunities enhances aggregate
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productivity relies on which workers learn the most from the high-skill. The stock of human capital

expands with greater spatial inequality if skilled workers learn disproportionately from interacting

with their peers. In contrast, the spatial concentration of learning opportunities reduces aggregate

productivity if between-skill complementarities prevail.

Spatial policies have the potential to accelerate aggregate human capital accumulation. The

competitive allocation is inefficient as workers do not internalize their impacts on others’ learning.

The marginal social value of interactions hinges on learning complementarities. When high-skill

learn relatively more from each other, low-skill crowd out the learning opportunities of productive

cities, and the competitive equilibrium features too little spatial skill concentration. The reverse

occurs when between-skill complementarities are relatively stronger. Skilled workers do not consider

how their location choice helps low-skills learn, and the decentralized equilibrium features too much

spatial inequality. Regardless of the complementarities, the optimal allocation spurs human capital

accumulation and can be decentralized by place-based policies that vary by skill.

The second part of this chapter develops and structurally estimates a quantitative version of the

framework with three main additions. First, workers consume local housing in addition to the freely

traded good already present in the theory. Second, workers face migration costs. The migration

costs imply that workers’ birthplace shapes their lifetime opportunities. Third, I impose a flexible

functional form on the learning technology according to which three elasticities govern skill growth:

with respect to workers’ own skill, the skill of the worker they interact with, and a cross-term that

captures learning complementarities.

I estimate the quantitative framework using French administrative data. The estimation is split

into two steps. I use the structure of the model to derive estimating equations that identify a first

set of parameters. I then calibrate the remaining parameters in the second step to match salient

features of the wage distribution in the aggregate, across cities, and across the lifecycle.

The learning complementarities are transparently estimated. The learning technology is recovered

from a model-consistent local projection of future wages on workers’ current wages and the average

wage of the individuals working in the same city. I find the three elasticities governing the learning

technology to be positive. First, relatively skilled workers experience faster skill growth holding

constant their interactions. Second, every worker learns more from skilled individuals. Third, the

returns to meeting a high skill are relatively larger for skilled workers. Altogether, the learning

technology displays stronger within- than between-skill complementarities.

The equation estimating the learning technology allows me to derive clear-cut conditions that

guarantee unbiased estimates. Specifically, the drivers of wage growth other than local interactions

must be identically and independently distributed across cities and individuals conditional on

workers’ wages. I use the granularity of the French matched employer-employee data to relax this

identification assumption in three ways. First, I control for worker-level characteristics, such as

age and tenure, known to shape wage growth. Second, I saturate the local projection with fixed

effects to control for unobserved heterogeneity in wage dynamics across cities and firms. In the most

restrictive specification, the skill growth elasticities are estimated off variations in average wages

across neighborhoods of employment for individuals who live in the same neighborhood and work in
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the same firm within the same city. Third, to generate quasi-random variations in skill density across

space, I instrument present neighborhood wages with variations in the local share of white-collar

twenty years ago. Armed with these controls and instrument, I find that neighborhoods with a

greater skill density boost the wage growth of the individuals working there, and disproportionately

so if they are skilled.

The estimated returns to local interactions are substantial. The average worker experiences

a wage growth 4.5 log points faster over five years when working in Paris (top 10% of the city-

growth distribution) compared to when working in Troyes (bottom 10%). These growth gains differ

considerably across workers due to the estimated complementarities. A worker in the bottom 10%

of the wage distribution sees its wage growth accelerate by 2.8 log points when moving from Troyes

to Paris, whereas these dynamic gains are 7.3 log points for individuals in the top 10%. Altogether,

the model explains 64% of the between-city wage growth variance.

In the third part of this chapter, I use the estimated model to quantify how much of the spatial

differences in human capital accumulation are caused by the segregation of learning opportunities,

and what are the implications for spatial disparities and aggregate productivity. To do so, I compare

the baseline equilibrium in which cities segment learning interactions with a counterfactual economy

in which individuals learn randomly from workers in the entire economy.

I find the spatial segmentation of opportunities, rather than the sorting of fast-learning workers,

to explain the vast majority of the learning gaps between cities. This, in turn, engenders spatial

learning inequality. Workers born in the 25% poorest French cities have a lifetime skill growth 10%

lower than the average French worker. In addition, the concentration of opportunities in a few

cities amplifies regional disparities. Productive cities get bigger as workers need to live there to

accumulate human capital faster. The spatial concentration of high-skill rises as they benefit more

over time from working in skill-dense locations. Combined, spatial wage inequality increases: the

between-city wage variance grows from 0.007 to 0.024 when learning occurs within cities.

The confinement of learning opportunities to productive cities also boosts aggregate human

capital accumulation. The stock of human capital is 1.2% higher when learning takes place within

cities. Learning complementarities explain the majority of this productivity gain: the average skill

of the economy would only be 0.5% higher were all workers to learn equally from skilled workers.

The learning gains are concentrated at the high end of the skill distribution due to the concentration

of these workers in skill-dense cities and the presence of learning complementarities. In contrast,

workers at the bottom of the skill distribution neither gain nor lose from the spatial concentration

of learning opportunities.

Combined, the estimated model suggests the existence of a steep tradeoff between spatial

inequality and human capital accumulation. In the fourth part of this chapter, I quantify this

equity-efficiency tradeoff by evaluating the consequences of a moving voucher policy. Specifically, I

study a policy subsidizing every worker born in the 25% poorest French cities to move to the three

largest locations.

The moving voucher policy is spatially redistributive. On the one hand, the policy improves

the opportunities of treated workers by helping them reallocate to skill-dense locations. When the
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subsidy covers 80% of the average migration costs, which represents 1.5% of GDP, the probability

that treated workers migrate to the three largest French cities rises from 7% to 45%. Treated

individuals have an easier access to learning centers, and their lifetime skill growth coincides with

that of the average worker. As a result, their welfare increases by 2% on average. On the other hand,

the moving vouchers depress the learning of the non-treated. The policy attenuates the spatial

concentration of skills by reallocating marginally less skilled workers to productive cities. The local

learning opportunities worsen, and workers born there, as well as the other non-treated workers who

were migrating to these cities to learn, experience slower human capital accumulation. Combined

with the financial cost of the policy, non-treated workers suffer average welfare losses of 2.3%.

While the policy reduces spatial disparities, it acts negatively on aggregate efficiency. The stock

of human capital is 0.3% lower when the policy reaches 1.5% of GDP. The general equilibrium effect

of the policy more than offset its partial equilibrium gains. Holding the quality of local opportunities

constant, human capital would rise by 0.8% as the policy expands the pool of workers with access

to fast-learning opportunities. Absent learning complementarities, the general equilibrium feedback

would be a third smaller. I conclude that learning complementarities are crucial for the tradeoff

between spatial inequality and human capital accumulation.

Related literature This chapter primarily adds to two strands of the literature. The first studies

how social interactions shape productivity growth. Started by the seminal work of Jovanovic and

Rob (1989), and later developed by Lucas (2009a), Lucas and Moll (2014), Perla and Tonetti (2014),

and Akcigit et al. (2018), amongst many others, this literature initially abstracted from space. The

idea that cities facilitate knowledge diffusion is however not novel and can be traced back to Marshall

(1890) and Jacobs (1969).1 In particular, if interactions spur learning and mainly occur between

individuals who work next to each other, then the spatial distribution of talent must matter for

human capital accumulation. Two papers have recently quantified this insight.2 Martellini (2022)

finds that local peer effects explain the majority of the faster lifecycle wage growth of large cities in

the United States. Crews (2023) builds a dynamic model in which the vibrancy of cities, defined

by their size and skill composition, shapes how workers learn. He concludes that relaxing land-use

regulations in New York and San Francisco spurs aggregate growth.3

I contribute to this literature by characterizing the crucial role played by learning complemen-

tarities in shaping how cities affect human capital accumulation. In particular, by not imposing

restrictions on learning complementarities, I show that the spatial segmentation of learning oppor-

tunities may be detrimental to learning, an insight already noted by Benabou (1993).

The second strand of the literature estimates the dynamic returns to interactions between

neighbors and coworkers. Across space, Baum-Snow and Pavan (2012), de la Roca and Puga (2017),

1Since then, a long list of papers have documented how proximity shapes knowledge diffusion (e.g. Jaffe et al.,
1993; Audretsch and Feldman, 2004; Moretti, 2021; Atkin et al., 2022; Baum-Snow et al., 2023).

2Several other recent papers have studied the impact of space on aggregate growth through trade and technology
diffusion, e.g. Lucas (2009b), Alvarez et al. (2013), Sampson (2016), Desmet et al. (2018), Buera and Oberfield (2020),
Perla et al. (2021), and Cai et al. (2022).

3A related literature focuses on the joint evolution of city sizes and aggregate growth (Rossi-Hansberg and Wright,
2007; Herkenhoff et al., 2018; Hsieh and Moretti, 2019; Duranton and Puga, 2023).
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and Eckert et al. (2022), among others, find the wage age-profile of large cities to be relatively steeper.

Within the firm, Nix (2020) and Jarosch et al. (2021) document that workers employed in high-wage

firms experience faster wage growth. I add to this literature in three ways. First and foremost, I

estimate how the returns to local interactions vary across workers. The granularity of the French

matched employer-employee allows me in particular to estimate these learning complementarities

while addressing some of the endogeneity concerns present in the peer effect literature (Angrist,

2014). Second, I find the effect of cities’ skill composition on wage growth to be one order of

magnitude larger than that of city size. Third, I show that the neighborhood where individuals work

shapes their wage growth even after controlling at which establishment and firm they are employed.

This chapter also connects more broadly with several papers in economic geography. First,

it adds to the literature that investigates the sources of spatial agglomeration (for a survey, see

Duranton and Puga, 2004; Behrens and Robert-Nicoud, 2015). Two papers in particular have

studied theoretically how learning within cities triggers spatial agglomeration. Glaeser (1999) shows

that urbanization rises when the ability to learn by imitation increases. More recently, Davis and

Dingel (2019) finds that local interactions can provide a motive for sorting even when cities are

ex-ante similar. I contribute to this literature by quantifying the strength of these agglomeration

forces. I find that learning within cities amplifies the skill concentration in space, an empirical

pattern documented by Combes et al. (2008), Eeckhout et al. (2014), and Diamond (2016), among

others. Second, this chapter adds to the literature that studies optimal spatial policies.4 Most

related are the papers by Rossi-Hansberg et al. (2019) and Fajgelbaum and Gaubert (2020) who

study optimal policy in the presence of worker sorting and static production spillovers. Related to

these papers, I characterize the optimal spatial policy when spillovers are dynamic.

The rest of this chapter is organized as follows. Section 2 presents the theory and characterizes

how learning complementarities shape the tradeoff between spatial inequality and human capital

accumulation. Section 3 turns to the French matched employer-employee to estimate these comple-

mentarities. Section 4 estimates the rest of the model, and Section 5 quantifies the impact of local

interactions on human capital accumulation and agglomeration. Section 6 proceeds to study the

consequences of spatial policies on spatial inequality, productivity, and welfare. Section 7 concludes.

2 A Theory of Learning across Space

In this section, I shed light on the tradeoff between spatial inequality and human capital accumulation

by offering a model of learning across space. The model puts learning complementarities front and

center. The remaining ingredients are standard in the quantitative spatial literature (Redding and

Rossi-Hansberg, 2017).

4See Glaeser and Gottlieb (2008) and Kline and Moretti (2014) for reviews of the estimated consequences of
place-based policies on productivity.
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2.1 Setup

I model workers that sort into cities. Every period, a unit mass of young workers enters the labor

market. Workers live for two periods and discount the future at rate β. Denote their first and second

life period as young (y) and old (o). Old workers express no altruism towards future generations.

Workers choose in which city to work at any point in time.5 Cities are indexed by ℓ, and the total

number of cities L in the economy is fixed. I study the steady state of this economy and omit time

subscripts.

Preferences Individuals consume a single, freely-traded good taken to be the numéraire. I

abstract from local consumption for the sake of tractability. I add housing in Section 2.6. Individuals

hold linear utility over their consumption. They supply inelastically one unit of labor per period, so

that wages and incomes are interchangeable. They do not have access to a saving device.

Individuals have idiosyncratic preferences for the city they work in, denoted by εεε = {εℓ}Lℓ=1.

These preferences are drawn from independent Gumbel distributions with city- and age-specific

location parameters Ba
ℓ , a ∈ {y, o}, and scale parameter ϑ−1. The location parameter Ba

ℓ reflects

the amenities offered by city ℓ to workers with age a. Young workers may prefer cities with a vibrant

nightlife whereas old workers may value the opera’s quality more, and I impose no relationship

between By
ℓ and Bo

ℓ . Local amenities are taken as given. Location preferences are independent

across the lifecycle.6

Finally, consumption and location preferences are perfect substitutes. Hence, the per-period

utility of workers with income y and preferences εεε when working in city ℓ is y + εℓ.

Human capital Young workers are endowed with an initial skill sy drawn from the skill distribution

Ny. The young skill distribution is a primitive of the model. I suppose that skills are uni-dimensional

and that the support of Ny is connected, positive, and bounded, [sy, s̄y], with sy ≥ 0 and s̄y < ∞.7

Workers learn in their youth. This learning is shaped by the interactions they encounter. If a

worker with skill sy interacts with a partner with skill sp, they obtain new skill so = eγ(sy, sp). The

learning technology γ encapsulates how workers’ human capital accumulation depends on their own

skill and that of the other workers. In addition, workers experience an idiosyncratic learning shock,

e, which captures the other sources of learning (e.g. on-the-job training). These shocks are drawn

from the city-independent distribution F with support R+.
8

I impose minimal restrictions on the learning technology.

Assumption 1 (Learning technology).

The learning technology γ is positive, bounded, and twice differentiable in (sy, sp).

5I define a city as a commuting zone in the data and thereby abstract from commuting decisions.
6I add migration costs in Section 2.6. Migration costs and persistent location preferences are isomorphic up to

welfare accounting.
7The estimation of the learning technology (Section 3) is robust to adding worker fixed effects to account for

multi-dimensional skill heterogeneity.
8The idiosyncratic shocks are not required for the theory but smooth the aggregate old skill distribution. They

help quantitatively to match the wage distribution of old workers.
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Assumption 1 allows my framework to nest prevalent theories of human capital accumulation.

First, it encompasses cases where interactions are irrelevant for learning, γ(sy, sp) = g(sy) for some

function g. In this case, workers’ capacity to learn may still depend on their own skill, e.g. if skilled

workers are better at learning-by-doing (Huggett et al., 2011). Second, all workers may learn equally

from particular interactions, γ(sy, sp) = g(sy) + h(sp), for h another function. Then, the learning

technology does not feature any complementarity. In contrast, the learning complementarities may

be stronger within-skill than between-skill. Formally, the learning technology may be supermodular:

∂2γ(sy, sp)

∂sy∂sp
> 0, ∀(sy, sp).

Supermodularity demands the marginal gains from a skilled interaction to be greater for skilled

individuals. This occurs when workers with similar skills are better able to learn from each other

(e.g. Jovanovic, 2014). Alternatively, the learning technology may display complementarities that

are stronger between than within-skill. Then, the learning technology is submodular,

∂2γ(sy, sp)

∂sy∂sp
< 0, ∀(sy, sp),

and the marginal gains from skilled interactions are greater for low-skills. This occurs when

knowledge diffuses from skilled to relatively less skilled individuals (Lucas and Moll, 2014).

The simple learning technology

γ(sy, sp) = g1 × sy + g2 × sp + g12 × sy × sp (1)

illustrates well when do within- or between-skill complementarities prevail. While g1 and g2 govern

the average impact of workers’ and partners’ skills on learning, the complementarities are fully

determined by g12. If g12 > 0, the learning technology is supermodular, and skilled workers learn

relatively more from skilled partners. On the contrary, the learning technology is submodular when

g12 < 0.

Workers interact with one other worker in their youth. Two assumptions govern this interaction.

First, interactions are spatially segmented: they occur between individuals working in the same

location. In this section, I also assume for the sake of simplicity that interactions take place between

young workers. I relax this assumption in Section 2.6. Second, interactions are random. Hence,

while workers cannot target specific interactions, they can choose to locate in a particular city to

increase their chance of meeting a particular skill-type. The likelihood of an interaction with a skill

sp in city ℓ is then given by the local density of this skill, πy
ℓ (sp).

Learning takes time, and the new skill obtained from the interaction can only be used in the old

period. The aggregate skill distribution of old workers is denoted by No. Contrary to the young

workers’ skill distribution, this is a general equilibrium object that reflects the learning of every

young worker.
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Production Production takes place within cities. Each city has a representative competitive firm

with productivity Tℓ, which reflects the industries and firms present there. For the equilibrium

to be scale invariant, I normalize the dispersion of the idiosyncratic location preferences by the

(unweighted) average city TFP, ϑ = θ/E[Tℓ], for θ the scale-invariant dispersion.

The representative firm produces the tradable good using labor as the sole input. If the firm

hires a bundle of skill nnnℓ = {nℓ(s)}s, it produces output

Yℓ(nnnℓ) = Tℓ

∫
snℓ(s)ds.

This production function has two properties. First, cities’ TFP and workers’ skills are complements:

high-skill workers produce relatively more in productive cities than their low-skill counterparts.

Second, skills are perfect substitutes. I assume away skill complementarities in production, which

has been the focus of the spatial literature thus far (e.g. Diamond, 2016; Giannone, 2022), to isolate

the impact of complementarities in the learning process. Appendix C.1 shows that the theoretical

predictions are robust to adding production complementarities, and so is the estimation of the

learning technology in Section 3.

The labor markets are segmented by cities and skills. The city-specific zero profit condition pins

down wages, wℓ(s) = sTℓ, which inherit the complementarity between TFP and skill.

Feasibility Finally, the spatial allocation of workers must be feasible. The aggregate demand for

workers with skill s must be less than or equal to the aggregate supply of that skill:∑
ℓ

na
ℓ (s) ≤ na(s), ∀ s, ∀ a ∈ {y, o}, (2)

where na
ℓ (s) is the measure of workers with age a and skill s employed in city ℓ, and na(s) = dNa(s)

is the aggregate density of skill s for workers with age a. Accordingly, the local density of skill s in

city ℓ amongst workers with age a is

πa
ℓ (s) =

na
ℓ (s)

Na
ℓ

, ∀ s, ∀ ℓ, ∀ a, (3)

for Na
ℓ =

∫
na
ℓ (s)ds the mass of workers with age a employed in ℓ.

2.2 The Steady State Equilibrium

Three equations govern the steady state equilibrium.9

9The young spatial allocation is decoupled from that of the old. As a result, the economy is independent from its
initial condition and converges to its steady state in one period.
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Old workers Old workers solve a static location choice problem. They choose a city ℓ that

maximizes their present utility conditional on their skill so and their location preferences εεε,

V o(so, εεε) = max
ℓ

{wℓ(so) + εℓ} , ∀ so,∀εεε.

Workers’ idiosyncratic preferences ensure that every skill is present in every location. In particular,
the number of old workers with skill s employed in city ℓ is given by

no
ℓ(so) = no(so)

(
eϑ(wℓ(so)+Bo

ℓ )∑
ℓ′ e

ϑ(wℓ′ (so)+Bo
ℓ′)

)
, ∀ s, ∀ ℓ. (4)

The first term captures the aggregate supply of skill so amongst the old and follows from the

feasibility condition (2). The second term is the probability that skill so chooses to work in city ℓ

and is given by the Gumbel-distributed location preferences.

Young workers Young workers solve a dynamic location choice problem,

V y(sy, εεε) = max
ℓ

{
wℓ(sy) + εℓ + β

∫ ∫
Vo[eγ(sy, sp)]dF (e)πy

ℓ (sp)dsp

}
, ∀ sy,∀εεε,

where Vo(sy) ≡ E[V o(sy, εεε
′) | sy] is the expected utility of an old worker with skill sy prior to

observing their idiosyncratic preferences.10 Young workers’ location decision depends on three

considerations. The first two are static and are common to old workers. The third consideration is

dynamic and reflects where the best learning opportunities are located. The expected future utility

of working in city ℓ is indeed given by the weighted average of the gains from particular interactions,

Vo[eγ(sy, sp)], with weights given by the local likelihood of such interactions, πy
ℓ (sp). A location

constitutes an attractive learning center if it provides a large density of individuals from whom

workers learn relatively more. When interactions do not shape human capital accumulation, this

dynamic consideration disappears.

As for the old, the number of young workers with skill s employed in city ℓ follows from the

Gumbel location preferences and the feasibility condition (2),

ny
ℓ (sy) = ny(sy)

(
eϑ(wℓ(sy)+By

ℓ +βE[Vo(Eγ(sy ,S
y
ℓ ))])∑

ℓ′ e
ϑ(wℓ′ (sy)+By

ℓ′+βE[Vo(Eγ(sy ,S
y

ℓ′ ))])

)
, ∀ s, ∀ ℓ, (5)

where E[Vo(Eγ(sy, S
y
ℓ ))] =

∫ ∫
Vo[eγ(sy, sp)]dF (e)πy

ℓ (sp)dsp is the expected future utility of young

workers with skill sy employed in city ℓ. This expectation is a general equilibrium object that depends

on the location choices of the other young workers. When deciding where to work, individuals take

the location choice of others as given.

Skill distribution The aggregate skill distribution of old workers is a general equilibrium object

that reflects the learning experienced by young individuals. Specifically, the fraction of old workers

10Using standard extreme-value algebra, Vo(sy) = c+ log
(∑

ℓ e
ϑwℓ(sy)

)
/ϑ for c a constant.
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with skill less than so is given by

No(so) =
∑
ℓ

∫ ∫ ∫
1 {eγ(sy, sp) ≤ so} dF (e)ny

ℓ (sy)π
y
ℓ (sp)dspdsy, ∀ so. (6)

The spatial allocation of young workers determines the skill distribution of old workers, and thus

the aggregate stock of human capital, by shaping the aggregate probability of two skills meeting.

Equilibrium Equations (4) to (6) describe the steady-state spatial equilibrium. Given the spatial

distribution of learning opportunities, young workers choose a city where to work. In equilibrium,

their expectations must be consistent with the other workers’ location choices. The spatial allocation

of young workers determines the aggregate skill distribution of old workers, and the spatial allocation

of old workers must be feasible.

Definition 1 (Steady state equilibrium).

A steady state equilibrium is a young and old allocation, {ny
ℓ , n

o
ℓ}ℓ, city-specific skill densities amongst

young workers, {πy
ℓ }ℓ, and a skill distribution of old workers, no, such that:

1. Taking the behavior of other young workers as given, the young spatial allocation satisfies (5);

2. Given the old workers’ skill distribution, the old spatial allocation satisfies (4);

3. The local skill densities are consistent with the location decisions of young workers (3);

4. The skill distribution of old workers satisfies (6).

The steady state equilibrium boils down to an infinitely-dimensional, non-linear fixed point in

the local skill densities. The existence of an equilibrium is guaranteed by the idiosyncratic location

preferences which coordinate expectations. Furthermore, as standard in spatial models, there exists

a unique steady state to the extent that the dispersion forces are larger than the agglomeration

forces (Redding and Rossi-Hansberg, 2017). In the present framework, the larger the scale parameter

of the taste shock distributions θ−1, the larger the dispersion forces. Meanwhile, the agglomeration

forces emanate from the learning interactions, and the smaller the discount factor β, the less workers

value learning. Hence, when θβ is small enough, there exists a unique steady state.

Proposition 1 (Existence and uniqueness).

A steady state equilibrium exists. If θβ is small enough, there exists a unique steady state.11

I highlight two special types of spatial allocation that may prevail in equilibrium. In the first,

the skill densities are the same in every city, and therefore so are the learning opportunities. I refer

to this allocation as the symmetric allocation.

Definition 2 (Symmetric allocation).

An allocation is symmetric if the local skill densities are identical, πa
ℓ (s) = na(s) for all s, ℓ and a.

Alternatively, productive locations may feature a higher density of skilled workers. In this case,

11Appendix A presents the proofs of all propositions.
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the allocation satisfies stochastic positive assortative matching (SPAM).12

Definition 3 (Stochastic positive assortative matching).

An allocation satisfies stochastic positive assortative matching if the local skill densities can be ordered

in the first-order stochastic dominance sense by cities’ productivity: πa
ℓ ≻FOSD πa

ℓ′ ⇐⇒ Tℓ > Tℓ′.

In the absence of restrictions on the learning technology, the steady state equilibrium depends

on the entire skill distribution of every city. To gain analytical tractability, I approximate the

equilibrium around the point where cities have homogeneous TFP, log Tℓ ≈ log T̄ for all ℓ and some

T̄ . When cities share a common TFP, the production complementarities vanish. Workers no longer

have an exogenous motive to sort across cities, and there exists an equilibrium with a symmetric

allocation (Proposition A.1). Proposition 1 guarantees that this symmetric equilibrium is unique

when θβ is small enough, which I assume to be the case for the rest of this section.13 Approximating

the equilibrium around the homogeneous TFP point thus simplifies how to keep track of the local

skill densities.

Sections 2.3 and 2.4 characterize the approximated equilibrium. Throughout, x̄ refers to the

value of x in the homogeneous TFP, symmetric equilibrium, and I use capital letters to denote

random variables. For instance, Sy is the aggregate skill distribution of young workers, and Sy
ℓ the

skill distribution of young workers in city ℓ. I return to the global solution from Section 2.5 onward.

2.3 Local Interactions as a Source of Agglomeration

I first show how the spatial segmentation of learning opportunities affects where individuals choose

to work. I start by characterizing the location decisions of old workers to contrast them with those

of the young. When between-city differences in TFP are small, (4) implies that the number of old

workers with skill so employed in city ℓ is to a first order given by14

no
ℓ(so) ≈

n̄o(so)

L︸ ︷︷ ︸
Symmetric

+ θ

(
n̄o(so)

L

)
log

(
Tℓ

T̄

)
so︸ ︷︷ ︸

Sorting for working

, ∀ so,∀ ℓ, (7)

where n̄o(so) is the density of old workers with skill so when cities are homogeneous. When cities

share a common TFP, old workers locate in cities that maximize their idiosyncratic preferences,

and the resulting allocation is symmetric. When some cities are more productive, the local wages

are relatively higher, which attracts more workers. Furthermore, the between-city wage gaps are

increasing in workers’ skills due to the production complementarities. High-skill workers are therefore

12This definition generalizes the notion of positive assortative matching in the context of many-to-one matching in
which every skill is present in every city due to the idiosyncratic location preferences.

13Corollary A.2 also provides a bound on θβ that guarantee uniqueness of the symmetric equilibrium under the
assumption that γ(sy, sp) = F(sy) + G(sy)H(sp) for F , G and H some functions. For a framework where local
interaction alone generate asymmetric equilibria, see Davis and Dingel (2019).

14For ease of exposition, I present in the main text the expression for the case of homogeneous local amenities.
Appendix A presents the general expressions. Amenity differentials affect city size but not the local skill densities,
and as a result, do not affect the qualitative predictions of the model.
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relatively more present in productive cities, and the old allocation satisfies SPAM.15 The dispersion

in idiosyncratic location preferences, θ, acts as the local labor supply elasticity and modulates the

amount of sorting.

The location decisions of young workers differ from those of the old in that they also care about

local learning opportunities. Specifically, from (5), the measure of young workers with skill sy in

city ℓ is to a first order given by

ny
ℓ (sy) ≈

ny(sy)

L︸ ︷︷ ︸
Symmetric

+ θ

(
ny(sy)

L

)
log

(
Tℓ

T̄

)
sy︸ ︷︷ ︸

Sorting for working

+ θ2β

(
ny(sy)

L

)
log

(
Tℓ

T̄

)
Θ(sy)︸ ︷︷ ︸

Sorting for learning

, ∀ sy, ∀ ℓ.

The third, new term captures the learning considerations. Specifically, the function Θ(sy) summarizes

how much young workers with skill sy value the learning opportunities of relatively productive cities.

When Θ(sy) > 0, these opportunities are relatively attractive, therefore increasing the supply of

sy in these locations. When Θ′(sy) > 0, skilled workers disproportionately value productive cities’

learning opportunities, intensifying their concentration in space. I define the total willingness to sort

of young workers as the sum of the sorting for working and learning motives, η(sy) ≡ sy + θβΘ(sy).

How much young workers value the learning opportunities of productive cities depends on who

works there and how much individuals learn from them,

Θ(sy) =

∫
(γ (sy, sp)− E [γ (sy, S

y)])︸ ︷︷ ︸
Relative learning from

sp interaction

(sp + θβΘ(sp))︸ ︷︷ ︸
Willingness to

sort of sp

dNy(sp), ∀sy. (8)

In particular, the probability to meet a skill sp in a productive city depends on their willingness to

work there, and therefore on how they themselves value the local interactions. Formally, Θ(sy) is

the solution to a infinitely-dimensional fixed point. The first-order approximation renders this fixed

point linear, which simplifies its characterization.16 I show in Lemma A.1 that this fixed point has

a unique solution when the dispersion forces are large enough.

The willingness to sort of young workers would solely rely on the production complementarities

were workers not to learn from their neighbors. The spatial allocation of young workers would

then also display stochastic positive assortative matching. The learning motive could a priori

offset this technological force if low-skill were to value the learning opportunities of productive

cities disproportionately. However, a higher density of low-skill workers in productive cities would

contradict the empirical evidence on sorting patterns found in this chapter and others (e.g. Combes

et al., 2008; Card et al., 2023). I therefore focus my attention to the part of the parameter space

that generates a SPAM allocation for young workers.

Lemma 1 (Stochastic positive assortative matching).

If log Tℓ ≈ log T̄ for all ℓ and minsy θβCov[γ1(sy, Sy), Sy] ≥ −1, the young allocation exhibits SPAM,

15Proposition A.3 shows that SPAM always prevail for old workers for any spatial distribution of TFP.
16These infinite-dimensional linear fixed points are referred to as Fredholm integral equation of the second kind.

Similar integral equations can be found in Allen and Arkolakis (2014).
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η′(sy) ≥ 0 for all sy.

Lemma 1 bounds the relative strength of the between-skill learning complementarities. For in-

stance, when the learning technology takes the form of (1), the condition simplifies to θβg12Var[Sy] ≥
−1, which imposes a bound on how submodular the learning technology can be.

How does the spatial concentration of skills affect the location decisions of workers when they

learn from the other workers in their city? In a SPAM equilibrium, individuals who work in

productive cities are more likely to interact with skilled workers. Productive cities are therefore

attractive learning centers to workers who disproportionally learn from high-skill. Formally, γ(sy, ·)
increasing implies Θ(sy) > 0, and the spatial segmentation of learning opportunities increases the

number of young workers with skill sy in productive cities. Two consequences follow.

First, the learning motive may constitute a source of agglomeration that endogenously increases

the size of productive cities. Specifically, if every individual learns relatively more from skilled

workers, the size of productive cities is larger in the presence of spatially segmented learning

interactions as individuals agglomerate there to learn from the local workers.

Second, the learning motive may increase the spatial concentration of skilled workers as they

agglomerate in a few cities to learn from each other. To a first order, the average skill of young

workers employed in city ℓ is

E[Sy
ℓ ] ≈ E[Sy]︸ ︷︷ ︸

Symmetric

+ θ log

(
Tℓ

T̄

)
Var[Sy]︸ ︷︷ ︸

Sorting for working

+ θ2β log

(
Tℓ

T̄

)
Cov[Sy,Θ(Sy)]︸ ︷︷ ︸

Sorting for learning

, ∀ ℓ, (9)

where Var[Sy] is the skill variance of young workers and Cov[Sy,Θ(Sy)] is the covariance between

workers’ skill and how much they value the learning opportunities of productive cities. When the

complementarities within-skill dominate those between-skill, young skilled workers have greater

incentives to interact with their peers. They therefore place a higher value on the learning

opportunities present in productive cities, and the local density of high-skill rises. Greater between-

city wage inequality follows (equation (38) in Appendix A.6). In contrast, if the between-skill

complementarities prevail, the learning motive reduces the concentration of skilled workers in

productive cities.

I summarize the consequences of the spatial segmentation of learning opportunities on the

geographic distribution of economic activity in Proposition 2.

Proposition 2 (Spatial inequality).

When log Tℓ ≈ log T̄ for all ℓ, γ(sy, ·) increasing (decreasing) implies Θ(sy) > 0 (Θ(sy) < 0), and γ

supermodular (submodular) implies Θ′ > 0 (Θ′ < 0). As a result:

1. If γ(sy, ·) is increasing for all sy, (un)productive cities are (smaller) larger when interactions

are spatially segmented; the converse holds when γ(sy, ·) is decreasing;

2. If γ is supermodular, the average skill of young workers in (un)productive cities is (smaller)

larger when interactions are spatially segmented, which leads to greater between-city wage

variance amongst young workers; the converse holds when γ is submodular.
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2.4 The Human Capital Consequences of Local Interactions

Between-city differences in skill growth arise endogenously from the sorting of young workers. To a

first order, the expected skill growth of young individuals starting their career with skill sy in city

ℓy is

E
[
So

sy
| sy, ℓy

]
≈ E

[
S̄o

sy
| sy
]
+ θ log

(
Tℓy

T̄

)
Cov

[
γ(sy, S

y)

sy
, η(Sy)

]
, ∀ sy.

In a SPAM equilibrium, interactions with skilled workers are disproportionally present in productive

cities. As a result, conditional on learning more from high-skill, individuals employed in productive

cities experience faster skill growth.

Do these spatial differences in learning matter for aggregate productivity? In the aggregate, the

average skill of old workers is given by

E[So] =
∑
ℓ

∫ ∫ ∫
eγ(sy, sp)n

y
ℓ (sy)π

y
ℓ (sp)dF (e)dspdsy. (10)

This equilibrium stock of human capital can be contrasted with the average skill of old workers that

prevails under the symmetric allocation:

E[S̄o] =

∫ ∫ ∫
eγ(sy, sp)n

y(sy)n
y(sp)dF (e)dspdsy. (11)

Equation (11) coincides with the stock of human capital were interactions not segmented by

cities since the spatial allocation of workers is then irrelevant for human capital accumulation.

Comparing (10) and (11), cities affect aggregate productivity by shaping the aggregate probability

of complementarity meetings. Absent learning complementarities, i.e. γ(sy, sp) = g(sy) + h(sp),

cities indeed do not shape aggregate productivity, E[So] = E[S̄o]. In that case, the faster human

capital accumulation of individuals working in productive cities is exactly offsetted by the slower

learning of workers employed in the other locations.

More generally, cities may amplify or dampen the stock of human capital. To a second order,

(10) implies that the average skill of old workers is17

E[So] ≈ E[S̄o] + θ2Var[log Tℓ]Ω, (12)

where Var[log Tℓ] is the variance of cities’ TFP. The constant Ω fully encapsulates the impact of

cities on the stock of human capital. To a second order, this stock is larger when interactions are

spatially segmented if and only if Ω > 0. This aggregate effect is given by

Ω =

∫ ∫
γ(sy, sp) (η

y(sy)− E[ηy(Sy)]) (ηy(sp)− E[ηy(Sy)]) dNy(sp)dN
y(sy).

17Cities do not have a first-order effect on the average skill of old workers as the between-city differences in learning
necessarily cancel each other.
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The first term captures how much skill sy learns from sp. The second and third terms together

determine the aggregate probability that they meet, which depends on both skills’ willingness to

work in productive cities.

Learning complementarities shape the impact of cities on aggregate human capital accumulation.

In a SPAM equilibrium, cities increase the chance that workers with similar skills interact. When

within-skill complementarities are strong, the marginal gains from skilled interactions increase in

workers’ skills. In such cases, the agglomeration of skilled individuals in productive locations boosts

aggregate human capital accumulation. On the contrary, if the between-skill complementarities

dominate, low-skill workers gain relatively more from meeting skilled partners. The spatial segre-

gation of skilled workers in productive cities prevents low-skill workers from learning from them

frequently, which lowers aggregate productivity.18

Proposition 3 (Human capital accumulation).

Suppose that log Tℓ ≈ log T̄ for all ℓ. If γ is supermodular, the average skill of old workers is larger

when interactions are spatially segmented, i.e. Ω > 0. Conversely, γ submodular implies Ω < 0.

As a corollary to Proposition 3, learning complementarities determine the existence of a tradeoff

between spatial inequality and human capital accumulation.19 In a SPAM equilibrium, larger

between-city wage inequality is necessarily associated with a stronger concentration of skilled

workers in productive cities and, therefore, a greater segregation of learning opportunities across

space. When within-skill learning complementarities prevail, an equity-efficiency tradeoff arises:

greater spatial wage inequality boosts the stock of human capital. Such a tradeoff is not present

when the between-skill learning complementarities are stronger. Then, a policy that reduces spatial

wage inequality also increases the stock of human capital.

Corollary 4 (Equity-efficiency tradeoff).

Suppose that log Tℓ ≈ log T̄ for all ℓ. In equilibrium, a greater between-city wage variance amongst

young workers leads to a greater (smaller) stock of human capital if γ is supermodular (submodular).

Learning complementarities therefore shape the tradeoff between spatial inequality and aggregate

productivity. They also determine whether there is too much or too little spatial skill concentration.

2.5 Optimal Policies

To study whether the spatial allocation of workers is efficient, I solve for the allocation chosen by a

utilitarian planner. I assume the planner has homogeneous Pareto weights across skills and cities to

focus on the learning externalities rather than redistributive concerns. I further suppose that the

planner cannot condition its allocation on workers’ idiosyncratic location preferences, either because

18Appendix A.10 presents the consequences of local interactions on human capital accumulation across the skill
distribution. When every worker learns relatively more from skilled interactions, local interactions increase learning
inequality across skills by boosting the average learning of skilled workers and dampening that of low-skill individuals.

19Formally, from (12), the equilibrium average skill of old workers can be rewritten E[So]−E[S̄o] ∝ ΩVar[E (logW y
ℓ )],

where Var[E (logW y
ℓ )] is the between-city wage variance. To a second-order, the equilibrium is always located on this

equity-efficiency loci. In particular, the impact of any policy that affects the spatial allocation of workers on aggregate
productivity is given by this technological frontier.
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they are unobserved or because it is not politically feasible. This restriction is standard in models

with idiosyncratic location preferences (e.g. Rossi-Hansberg et al., 2019; Fajgelbaum and Gaubert,

2020).

Given these restrictions, the planner chooses a sequence of spatial allocation of workers,

{ny⋆
tℓ , n

o⋆
tℓ }t,ℓ, together with a sequence of consumption allocation across cities and skills, {cy⋆tℓ , c

o⋆
tℓ }t,ℓ,

to maximize the discounted sum of each cohort’s expected lifetime utility,20

∑
ℓ

∫
E[V o⋆

0 (so, εεε) | s]no⋆
0ℓ(so)dso +

∑
t>0

βt
∑
ℓ

∫
E[V y⋆

t (sy, εεε) | s]ny⋆
tℓ (sy)dsy. (13)

The function V o⋆
0 (so, εεε) is the utility of old workers with skill so and preferences εεε in the initial

period under the planner’s allocation. Likewise, V y⋆
t (sy, εεε) is the lifetime utility of young workers in

cohort t. The planner cannot observe workers’ idiosyncratic preferences, and thus maximizes workers’

expected utility. The consumption allocation must not exceed aggregate output. Meanwhile, the

spatial allocation of workers must be consistent with the aggregate supply of each skill and workers’

idiosyncratic location preferences. These preferences act as an incentive constraint: to increase the

supply of workers in a particular city, the planner must compensate them for their foregone location

preferences.21 I solve first for the global, non-linearized planner’s allocation. I focus on the steady

state allocation, referred to as the (constrained) optimal allocation.

Old workers do not affect the learning of young workers, and therefore do not exert externalities.

As a result, the laissez-faire and the planner allocation coincide.22

In contrast, the allocation of young workers need not be efficient. Young workers do not

internalize the impact of their location choice on others’ learning. As a result, workers’ incentives to

live in specific cities may fall short of what is socially desirable. Specifically, there exists a wedge

between the optimal and laissez-faire consumption allocation

cy⋆ℓ (sy)− cyℓ (sy) = τ⋆ℓ (sy)−
∑
ℓ′

(
ny⋆
ℓ′ (sy)

ny(sy)

)
τ⋆ℓ′(sy), ∀ sy, ∀ ℓ. (14)

When this wedge is positive, the laissez-faire equilibrium features too few workers with skill sy in

location ℓ. This wedge is given by the net welfare gains (or losses) brought by a marginal increase

in the number of skill sy in city ℓ,

τ⋆ℓ (sy) = β

∫ ∫ (
Vo[eγ(σ, sy)]− E[Vo(eγ(σ, Sy⋆

ℓ ))]
)
dF (e)πy⋆

ℓ (σ)dσ, ∀ sy, ∀ ℓ, (15)

20By the property of the Gumbel distribution, the expected utility of workers who choose to work in city ℓ is
identical to the unconditional expected utility, E[V o⋆

0 (s,εεε) | s, ℓ ≻ ℓ′ ∀ℓ′ ̸= ℓ] = E[V o⋆
0 (s,εεε) | s].

21Appendix B.1 describes the full set of constraints faced by the planner.
22The efficiency of the old allocation highlights that, absent learning externalities, the planner has no incentives to

redistribute resources across cities. Idiosyncratic location preferences alone thus do not create inefficiencies. While this
may appear in contradiction with the conclusions of Fajgelbaum and Gaubert (2020); Donald et al. (2023); Mongey
and Waugh (2024), the two sets results are reconciled by noting the absence of local non-traded goods in the present
framework. The marginal utilities of consumption are then trivially equalized across space, and the planner does not
redistribute across space.
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where E[Vo(eγ(σ, Sy⋆
ℓ ))] =

∫
Vo[eγ(σ, sp)]π

y⋆
ℓ (sp)dsp is the expected future utility of working in city

ℓ for skill σ. These local welfare gains are positive if workers in ℓ learn relatively more from skill sy

than from the average local worker. Hence, the optimal spatial allocation features a greater number

of skill sy in city ℓ to the extent that the workers employed in that city learn disproportionately

from that skill.

Equation (14) implies that the laissez-faire equilibrium is inefficient as long as workers learn from

others. Characterizing the spatial misallocation amounts to solving for the non-linear, infinitely

dimensional fixed point consisting of (14), (15), and the local labor supplies. As for the laissez-faire

equilibrium, I simplify this fixed point by studying the optimal allocation when the spatial TFP

gaps are small, log Tℓ ≈ log T̄ . Appendix B.3 presents the first-order approximation.

I find learning spillovers within cities to generate spatial misallocation through two channels.

First, productive cities may be too large. Conditional on learning from skilled individuals, young

workers agglomerate in productive cities (Proposition 2.1). In doing so, they forego their idiosyncratic

location preferences for less productive locations. However, high-TFP cities do not offer ex-ante

better learning opportunities. Holding aggregate productivity constant, the planner thus desires to

decentralize learning centers.23 When spatial TFP gaps are small, this is achieved by reallocating

workers from high- to low-TFP locations independently of their skills.

Second, the laissez-faire equilibrium may feature too much or too little spatial skill concentra-

tion. When within-skill complementarities dominate those between-skill, skilled workers benefit

disproportionately their peers. Internalizing these spillovers, the planner increases the frequency

of interactions between skilled workers by augmenting their concentration in productive cities. In

contrast, relatively low-skill workers experience too few skilled interactions in the laissez-faire equi-

librium when the between-skill complementarities prevail. The planner corrects this misallocation

by reallocating skilled workers towards low-TFP cities that are abundant in low skills. In both cases,

the optimal allocation corrects the learning externalities and increases the stock of human capital.

Proposition 5 (Optimal allocation).

The laissez-faire equilibrium is efficient if interactions do not shape learning, γ(s, sp) = g(s).

Otherwise, the laissez-faire equilibrium is inefficient. Furthermore, when log Tℓ ≈ log T̄ for all ℓ:

1. If γ(sy, ·) is increasing (decreasing) for all sy, productive cities are too large (small) in the

laissez-faire equilibrium: N⋆
ℓ < Nℓ ⇐⇒ Tℓ > T̄ .

2. If γ is supermodular (submodular), there is too little (too much) young skill concentration in

productive cities: E[Sy⋆
ℓ ] > E[Sy

ℓ ] ⇐⇒ Tℓ > T̄ .

The optimal allocation implies a larger stock of human capital, E[So⋆] > E[So].

Which policy instruments can decentralize the optimal allocation? Equation (15) implies that

efficiency is restored through place-by-skill transfers, tyℓ (s). These transfers complement workers’

wages, and the income of young workers with skill s employed in city ℓ becomes Iyℓ (s) = wℓ(s)+ tyℓ (s).

When the spatial TFP gaps are small, the transfers can further be decomposed into two components.

23In a different setting, Waldfogel (2003) coined this externality the “preference externality”.
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First, a city-specific tax that corrects the size distortion found in Proposition 5.1. Second, skill-by-city

subsidies which generate the optimal amount of spatial skill segregation (Proposition 5.2).

Taking stock, the spatial segmentation of learning opportunities may shape geographic disparities

inequality, the stock of human capital accumulation, and may call for place-based policies. To

evaluate quantitatively their consequences, I add several extensions to the framework that allow me

to bring it to the data.

2.6 Quantitative model

I add two key elements to the model, housing and migration costs, frequently mentioned to explain

the presence of spatial inequality and justify the need for local policies (e.g. Chetty et al., 2014). I

also let young workers interact with old partners. I solve for the global, non-linearized solution of

the model numerically. Appendix D formally describes the quantitative model and the numerical

algorithm.

Housing In addition to the freely traded numéraire, households consume a local good sold at

(rental) price pℓ. I refer to this good as housing. Households have Cobb-Douglas preferences over

the two goods, with α representing the housing expenditure share.24 In each city, local land-owners

supply a stock of housing Hℓ = Hpδℓ , for H a constant and δ the housing supply elasticity.

Migration costs While workers remain free to change location whenever they please, they incur

a migration cost upon moving. I let these migration costs vary across the lifecycle, e.g. if young

workers face tighter borrowing constraints or if old workers have accumulated more social capital.

I assume that workers are born in the location where their parents lived when they were young;

that is, the probability of being born in city ℓ is given by Ny
ℓ .

25 A young worker born in city ℓ

that moves to city ℓ′ incurs a utility cost κyℓℓ′ .
26 Likewise, an individual who lived in ℓ in their

youth and migrates to location ℓ′ in their old period pays a cost κoℓℓ′ . I assume symmetric migration

costs, κaℓℓ′ = κaℓ′ℓ for a ∈ {y, o}, and I normalize κaℓℓ = 0 for every ℓ and a ∈ {y, o}. The presence of

migration costs implies that the expected lifetime utility of young workers now depends on their

skill and birthplace. In particular, expected utilities are no longer equalized across space.

Learning I let young workers learn from young and old workers. Furthermore, I assume that four

elasticities govern the learning technology

log γ(s, sp) = g0 + g1 log s+ g2 log sp + g12 log s log sp. (16)

24For empirical evidence using U.S. data in support of the constant housing expenditure share implied by the
Cobb–Douglas functional form, Davis and Ortalo-Magné (2011).

25I could alternatively assume that workers’ birthplace is given by their parents’ location when old. The probability
to be born in ℓ would be No

ℓ . In the data, I define a young as a worker between 25 and 40 year old. I stick with the
first formulation to stick closer to the empirical timing of birth. This will not matter quantitatively since Ny

ℓ ≈ No
ℓ .

26Alternatively, these migration costs can represent auto-correlation in workers’ location preferences. The two
interpretations are isomorphic from a positive standpoint.

18



The first parameter, g0, determines the average skill growth. The elasticity g1 governs how workers’

own skill shapes their human capital accumulation holding constant the skill of their learning partner.

In particular, g1 > 1 implies that skilled workers learn relatively faster. The two other parameters,

g2 and g12, dictate the returns to interactions. Workers learn relatively more from skilled partners

on average when g2 > 0, and particularly so if they are themselves skilled when g12 > 0.

While parsimonious, the learning technology (16) has two advantages. First, it allows for

technology that are neither supermodular nor submodular, and therefore for which the theory is

ambiguous.27 Second, Figure E.8 shows that it is not possible to reject empirically its log-linear

structure.

Parametrization Finally, I suppose that the skill distribution of young workers is log-normal

with mean µy and standard deviation σy, and I parametrize the idiosyncratic learning shocks to be

log-normally distributed with zero mean and standard deviation σe.
28

Relationship to theory To what extent the results derived in Sections 2.3 to 2.5 hold in the

quantitative model? The introduction of migration costs and housing consumption alters the

analytical tractability of the model. Instead, I rely on numerical methods. In Section 5, I compare

the estimated framework with a counterfactual economy in which interactions are not spatially

segmented. The numerical results align with the qualitative predictions of Proposition 2 and 3.

3 Estimating the Returns to Local Interactions

As highlighted in the previous section, learning complementarities are crucial in determining how

the spatial segmentation of learning opportunities affects productivity. In this section, I present

evidence on the role of cities’ skill composition in shaping workers’ wage growth. I argue that these

evidence can be used to estimate the learning complementarities.

3.1 Data

I estimate the model on French matched employer-employee data (DADS).29 This dataset comes in

two formats. The first format is a 4% representative panel that tracks the entire history of individuals

in the labor market (DADS panel).30 The second format is a repeated yearly cross-section covering

the universe of employed workers (DADS salariés). Both datasets provide information on workers’

wages, the number of hours worked, the location where they work and live, along with demographic

information. The data goes back to 1976, but frequent changes of variables make it difficult to use

the observations collected prior to 1993.

27The technology (16) indeed differs from (1) in that it is expressed in logs.
28Normalizing the mean of the learning shocks distribution to zero is without loss of generality since it is not

separately identified from g0 in the learning technology.
29DADS stands for “Declarations Annuelles de Données Sociales”. The dataset is constructed from employer tax

records which are compiled by the French statistical agency (INSEE).
30Individuals’ employment history is recorded in the dataset if (a) they have at least one employment spell, and (b)

they are born in the first fourth days of each quarter.
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This dataset has several advantages over other data sources used in the literature. First, its

long-panel dimension allows me to measure individual wage growth at a long-term horizon. Second,

the cross-sectional format is useful to measure precisely the local skill composition of granular

geographical levels. Third, it is one of the few matched employer-employee datasets to provide

information on where individuals work (firm, establishment, and neighborhood) and live.

I apply the same sample restrictions on both datasets. I focus my analysis on full-time employed

workers between 25 and 55 years old. Workers employed in the public sector in France have their

wages determined nationally by their tenure, and as such, their wage may not fully reflect their

productivity. I therefore keep in the sample workers employed in the private sector, and I exclude

the education and health industries due to their large fraction of public servants. I measure workers’

wages by their gross yearly salaries divided by the number of hours worked, and I truncate the

hourly wage distribution at the 5% and 99.9% percentile to minimize measurement errors in hours

worked.31 Appendix E.1 provides further details on the construction of the sample.

Over time, wages grow for two reasons. First, workers experience idiosyncratic changes. Second,

the aggregate wage fluctuates.32 Aggregate trajectories are absent from the framework laid down in

Section 2. To abstract from them empirically, I normalize the average log wage to zero every year.

These trajectories may also differ across space, e.g. for cities impacted by the deindustrialization of

the French economy. I therefore focus the study to the 2009-2019 time window. In that decade,

aggregate growth was evenly spatially distributed in France (Figure E.2a), guaranteeing that I do

not conflate faster lifecycle wage growth with faster aggregate growth.

I define a city as a commuting zone (CZ). A commuting zone is a statistical area defined by the

French statistical agency (INSEE). It consists of a collection of contingent municipalities clustered

together to reduce the commuting flows across them. There are 297 such areas in metropolitan

France, which span the whole territory.33 Commuting zones are the natural geographical unit when

thinking of local labor markets. In particular, their relatively large size (40,000 employed workers

on average) is well-suited to capture all the local interactions that a worker may experience. I use

the terms commuting zones and cities interchangeably for the rest of the chapter.

I also use a second, more granular geographical unit for the empirical analysis. Specifically, I

define a neighborhood as a municipality (“commune” in French). Municipalities are legal areas that

also span the French metropolitan territory. However, they are smaller than commuting zones: in

2019, France was split into 34,839 municipalities with an average size of 1,800 inhabitants and an

average area of 15 square kilometers.34 They compare to ZIP codes in the United States. Figure E.1

displays a map of the French commuting zones alongside the municipalities contained in Paris

31In France, between 5% and 10% of the overall workforce is paid at the minimum wage (INSEE, 2021). For these
workers, wages are not a valid proxy for their skills. I focus on workers paid above the minimum wage by truncating
the left-tail of the wage distribution at the 5%.

32Mechanically, the log wage growth of worker i can be decomposed as ωit+1 −ωit = ω̃it+1 − ω̃it +E[ωit+1]−E[ωit],
for ωit = logwit and ω̃it ≡ ωit − E[ωit]. The first term is the worker-level wage growth and the second is aggregate
growth.

33Metropolitan France excludes the French overseas regions (Guadeloupe, Réunion, etc.).
34Municipalities were introduced with the French revolution in 1789. Since the 20th century, the number of

municipalities have been rather stable over time. Appendix E.2 provides more details on their history and characteristics.
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Figure 1: The geography of wage growth

(a) Within-worker wage growth by CZ (b) Within-worker wage growth by CZ wage
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Note: left-panel plots the average log wage growth at the five-year horizon by commuting zones for workers under 40 year old. Right-panel plots the
average log wage growth at the five-year horizon against the average wage of the commuting zones. The size of the markers is proportional to the
city size. In both panels, wage growth is measured at the worker level, i.e. logwit+1/wit.

and Lyon to highlight how granular these spatial units are. I restrict the analysis to metropolitan

municipalities with more than 50 employed workers to reduce local measurement errors. I am left

with 12,320 municipalities, representing 99% of the French workforce.

3.2 The Geography of Wage Growth

Fast lifecycle wage growth is very spatially concentrated in France. Figure 1a plots the average

five-year wage growth at the worker-level by commuting zones.35 On average, workers under 40

years old experience a wage growth of 10.6 log points every five years. Workers in Paris see their

wage increase by 15 log points. Meanwhile, the average wage growth in Lyon, the city in the 75th

percentile of the growth distribution and the second biggest French city, is 12 log points, and the

growth in Troyes, the city in the 10th percentile of the growth distribution, is 8 log points. In total,

half of the cities (20% of the population) offer wage growth below 9 log points.

Fast wage growth is concentrated in cities where wages are also relatively high. Figure 1b

displays the average wage growth at the city level against the city average wage. In the cross-section,

an increase of the city wage by one standard deviation is associated with a wage growth increase by

2 log points at the five-year horizon.36 I now argue how this pattern can be used to identify learning

complementarities.

35Consistent with the model, these averages are computed on “young” workers under 40 years old.
36This relationship is not mechanically caused by high-wage cities diverging away from the other places (Figure E.2)

or by housing prices (Figure E.2a).
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3.3 Identification

Given the learning technology (16), the next period’s skill of a worker i given their present skill, sit,

and the skill of their learning partner, spit , is

log sit+1 = g0 + g1 log sit + g2 log spit + g12 log sit log spit + log eit+1, (17)

where eit+1 is the idiosyncratic learning shock experienced by i. These shocks represent, for instance,

enrollments in training programs, returns to on-the-job tenure, or strokes of genius. They are

assumed to be identically and independently distributed across space, workers and partners. Through

(17), the learning technology can therefore be estimated via a local projection of future skills on

today’s skills, both for i and their partner.

Estimating (17) poses two empirical challenges: how to measure skills, and how to observe

learning interactions. I use the structure of the model to solve these challenges.

First, in the theory, skills and wages are related through wit = sitTℓit , for Tℓit the TFP of the

city where i works. Accordingly, I measure skills as wages deflated by local TFPs, which I obtain

through the structural estimation of the model (Section 4).37

Second, very few datasets track workers’ interactions.38. However, when interactions are random

within cities, the skill density of the location where i works constitutes a valid proxy for their

interactions. Specifically, substituting spit in (17) for the average skill in the location where i is

employed, Eℓit [log sjt], returns

log sit+1 = g0 + g1 log sit + g2Eℓit [log sjt] + g12 log sitEℓit [log sjt] + log eit+1 + νit. (18)

The term νit = (g2 + g12 log sit)(log spit − Eℓit [log sjt]) captures the gap between the particular

interaction experienced by i and the average interaction in city ℓ. Random interactions imply that

νit is orthogonal to sit and Eℓit [log sjt].

The learning technology can therefore be estimated from a local projection of future skills on

current skills and the average skill of the workers employed in the same city,

log sit+1 = αt + β log sit + γlog sℓit + δ log sitlog sℓit + uit. (19)

In (19), αt is a year fixed effect that controls for aggregate trends in wages, and log sℓ is the average

log skill in city ℓ. I measure future skills at the five-year horizon to smooth out transitory wage

shocks while keeping sufficient statistical power.39 I compute local average skills on all the workers

in the sample, but, consistently with the model, I only include young workers under 40 in the

regression.

37The structural estimation of cities’ TFP relies on estimates of the learning technology. To solve this fixed point, I
iterate on (19) and the structural estimation of the model until convergence. In practice, I estimate a small TFP
dispersion, so that log sit ≈ logwit.

38For recent papers aimed at measuring face-to-face interactions, see Atkin et al. (2022) and Emanuel et al. (2023).
39Section 4.2 describes how the 5-year estimates produced by (19) are turned into structural 15-year estimates.
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While (19) is effectively a linear-in-mean model, it does not suffer from the reflection problem

of Manski (1993). The dynamic nature of the underlying learning process indeed rules out the

simultaneity issue at the heart of the reflection problem: the average skill of a location is shaped by

the interactions that take place there, but those must have happened in the past to have en effect

on the skill composition. This argument is formally laid down in Section E.3. The two assumptions

essential to the identification are summarized in the following proposition.

Proposition 6 (Identification).

Suppose that

1. Interactions are random within cities, (sit, spit) | ℓit ⊥ Eℓit [log sjt],

2. The idiosyncratic learning shocks are i.i.d. across workers and cities, eit ⊥ (sit,Eℓit [log sjt]).

Then, (19) produces unbiased estimates of the learning technology: β̂ = g1, γ̂ = g2 and δ̂ = g12.

Similar local projections have been used in the learning from coworkers literature. For instance,

Nix (2020) and Jarosch et al. (2021) project respectively future wages on the average education

within the firm and the average wage within the establishment where workers are employed. My

empirical design differs from theirs in two ways. First, it studies the returns to local interactions

within cities rather than within firms. Second, it includes an interaction term between workers’

wages and the wage of the city where they work to estimate learning complementarities.

3.4 Endogeneity concerns

The assumptions underlying Proposition 6 may not hold empirically. Skilled workers may be able to

target interactions with skilled partners. The learning complementarities estimated by (19) would

then be biased upward, |δ| > |g12|. To investigate how large this bias is, I estimate (19) separately

for small and large cities and more or less unequal locations. To the extent that skilled workers can

better target skilled interactions in larger or more unequal cities, the estimated complementarity

should be higher in those places.

Meanwhile, the distribution of idiosyncratic learning shocks may vary across workers and cities.

Young workers may learn faster for reasons other than local interactions while earning lower wages,

eit ̸⊥ sit. Young workers may also agglomerate in large productive cities to enjoy the local amenities,

eit ̸⊥ Eℓit [log sjt]. I alleviate this second set of endogeneity concerns in three ways.

First, I control for as many sources of idiosyncratic learning shocks as my data allows. I include

age fixed effects to capture the faster growth of younger workers. To control for long-term contracting

and decreasing returns to experience, I add fixed effects for tenure at the job, occupation, industry,

and city level. I include a dummy for employer switching to account for its effect on wage growth.

Productive firms may have more frequent training programs while offering higher wages. In addition,

these training programs may target particular occupations. I include firm-by-occupation fixed

effects to account for these firm-specific determinants of human capital accumulation.40 Finally,

establishments may experience long-lasting productivity shocks that are passed through to wages.

40The firm-occupation fixed effects also allow for production complementarities across occupations at the firm level.
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I account for those by controlling for the growth in average wages at the establishment level.

Stacking these controls in the vector XXXit, the exogeneity assumption in Proposition 6 becomes

eit ⊥ (sit,Eℓit [log sjt]) |XXXit.

Second, I introduce a set of granular spatial fixed effects. The distribution of idiosyncratic

learning shocks may vary across cities in ways that are complex to control for. Wealthier cities

may for instance provide better public goods that influence workers’ wage growth. Controlling for

unobserved differences in wage growth across cities poses an identification challenge since the skill

growth elasticities in (19) are also estimated from between-city variations. I slightly depart from

the theory to solve this challenge and quantify how neighborhoods’ skill composition shapes human

capital accumulation.41 Specifically, I estimate the augmented local projection

log sit+1 = αtℓitnr
it
+ β log sit + γlog snw

it
+ δ log sitlog snw

it
+ΨΨΨ′XXXit + uit. (20)

In (20), nr
it and nw

it are the neighborhoods where worker i resides and works. The parameters αtℓnr

are year by city of employment by neighborhood of residence fixed effects, which soak unobserved

wage growth heterogeneity across cities (e.g. better universities) and across residence (e.g. better

transportation network).42 Meanwhile, log snw is the average wage of the workers employed in

neighborhood nw, and the skill growth elasticities in (20) are estimated by comparing individuals

who live in the same neighborhood and work at the same firm and occupation but in different

neighborhoods within the same city.43

Third and last, I rely on an instrumental variable strategy to generate quasi-random variations

in skill density across neighborhoods. Individuals working in the same location may be exposed

to common conditions that affect their present and future wages (Angrist, 2014). To address

this endogeneity concern common to the peer effect literature, I instrument the average skill of

neighborhoods by the change in their white-collar employment share in the 1990s,

Zn =
#white-collarn,2000
#workersn,2000

− #white-collarn,1993
#workersn,1993

,

where Zn is neighborhood n’s instrument. I define white-collar workers through their occupations.

Intuitively, the instrument uses implicit shocks in the 1990s that permanently reallocated high-skill

workers across neighborhoods within cities. The exclusion restrictions are that these shocks were

orthogonal to the neighborhoods’ initial conditions and have faded away twenty years later.

Figure 2 argues that the instrument satisfies the relevance and exclusion restrictions. Figure 2a

displays the average wage of neighborhoods in the 2010s against the instrument. The two are strongly

positively correlated, suggesting the relevance of the instrument: an increase by one percentage point

41An alternative would be to include city fixed effect in (19) and rely on temporal variations in city wages. Yet,
these changes are very likely to be correlated with local productivity shocks, and the estimated skill growth elasticities
would then conflate faster human capital accumulation and local aggregate growth.

42By comparing workers who live in the same neighborhood and work in the same firm, these fixed effects partially
reduce workers’ unobserved heterogeneity. Table E.1 further introduces worker fixed effects to soak the remaining
unobserved heterogeneity.

43I control in addition for the distance between the neighborhood of residence and work.
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Figure 2: The change in neighborhoods’ white-collar employment share (1993-2000)

(a) Wages in 2010
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(b) Employment shares in 1993
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(c) Emp. share change in 2010s
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Note: panel (a) plots the average wage of neighborhoods in 2010 (y-axis) against the change in their white-collar employment share between 1993
and 2000 (x-axis). Panel (b) plots the change in neighborhoods’ white-collar employment share between 1993 and 2000 (y-axis) against their
employment share in 1993 (y-axis). Panel (c) plots the change in neighborhoods’ white-collar employment share between 2010 and 2019 (y-axis)
against the change in employment share between 1993 and 2000. All plots are binned scatter plots with 30 bins. Consistently with (20), all variables
are first residualized by a city fixed effect and thus normalized to zero. The regression lines are estimated in the full sample of neighborhoods.

of the local share of white collar in the 1990s is associated with 0.95% increase in the average wage

of that neighborhood in the 2010s. Figure 2b argues that the underlying shocks were uncorrelated

with the neighborhoods’ initial conditions by showing that the change in the employment share of

white collar in the 1990s is barely correlated with their initial employment share. Finally, Figure 2c

presents suggestive evidence that the shocks in the 1990s are no longer correlated with present

changes in the skill composition of neighborhoods by plotting the absence of correlation between

the change in the employment share of collars in the 1990s and that in the 2010s.

By isolating random variations in skill density caused by past changes in occupation composition,

the instrument estimates the effect of neighborhoods’ skill composition on wage growth net of

time-invariant local characteristics. Over twenty years, changes in neighborhoods’ skill composition

may affect local characteristics other than the quality of the learning interactions (e.g. the physical

stock of capital), and indirectly through those wage growth. My identification strategy cannot

separate the “interaction” channel from these other dynamic forces. However, to the extent that

both channels capture the causal impact of the local skill composition on workers’ human capital

accumulation, I view them as isomorphic.

How can the elasticities estimated by (20) be interpreted? The parameters obtained from the

local projections (19) and (20) can be interpreted as reduced-form elasticities. In that case, γ

measures the average treatment effect of the local skill composition on skill growth, and δ estimates

the heterogeneity in treatment effects across the skill distribution. Interpreting those parameters

structurally is challenging since interactions are modeled at the city rather than the neighborhood

level. Nevertheless, to the extent that some interactions are happening within neighborhoods, I

view the elasticities estimated by (20) as informative of the null hypotheses g2 = 0 and g12 = 0.
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Table 1: The returns to local interactions

Dep. variable: 5-year skill
(1)
OLS

(2)
OLS

(3)
OLS

(4)
OLS

(5)
OLS

(6)
2SLS

Skill (g1) 1.010 1.010 1.010 0.940 0.935 0.935
(0.003) (0.003) (0.003) (0.002) (0.002) (0.003)

City skill (g2) 0.107 0.095 0.111 0.081
(0.015) (0.012) (0.005) (0.008)

Skill × city skill (g12) 0.108 0.102 0.104 0.089
(0.032) (0.007) (0.009) (0.013)

Log city size 0.002
(0.001)

Neighborhood skill 0.032 0.053
(0.008) (0.021)

Skill × neighborhood skill 0.071 0.077
(0.013) (0.023)

Controls

Worker-level · · ✓ ✓ ✓ ✓
Establishment growth · · · ✓ ✓ ✓
Distance work-residence · · · · ✓ ✓

Fixed effects

Year ✓ ✓ ✓ ✓ · ·
Occupation × firm · · · ✓ ✓ ✓
Year × residence × city · · · · ✓ ✓

Obs. 971,401 971,401 971,401 974,401 971,401 974,401

F-stat. · · · · · 53,539

Standard errors clustered at the city level for columns 1 to 4 and at the neighborhood level for columns 5 and 6. Sample includes all
workers between 25 and 40 year old. Skills measured as wages deflated by city TFP. Worker-level controls include age, job, occupation,
and industry tenure fixed effects, and a dummy for employer switching. Occupations and industry measured at the one-digit level.
Establishment growth computed as the growth in average wages, Ee[wt+1]/Ee[wt] for e the establishment. Column 7 instruments for
the average neighborhood skill by the change in the white-collar employment share between 1993 and 2000.

3.5 Results

Table 1 presents the estimated skill growth elasticities. Standard errors are clustered at the

same level as the spatial skill variations. The first columns presents the estimates produced by the

model-consistent local projection (Proposition 6). The three elasticities are estimated to be positive

and significant at the 0.1%.

First, high-skill workers enjoy faster skill growth (β̂ > 1): a skill increase of one standard

deviation boosts skill growth by 0.4 log points over five years for workers in the average city.44

Workers starting their career with lower skills do not catch up to high-skill individuals – although

44The average skill is normalized to zero, and therefore so is the skill of the average French city. Hence, β − 1
represents the marginal effect of increasing workers’ skill on skill growth for workers in the average French city.
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Figure 3: Predicted skill growth

(a) Average predicted skill growth by CZ (b) Predicted skill growth by CZ and initial skill
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Note: left-panel displays the relative average growth by commuting zone for the average French worker, ĝ2Eℓit
[log sit]. Right-panel displays

the predicted growth difference between Paris and Troyes (orange hexagons) and Paris and Lyon (blue circles) across the wage distribution,
(ĝ2 + ĝ12 log sit)

(
Eℓ′ [log sit] − Eℓ[log sit]

)
. Both set of statistics are computed using the estimates of column 1 in Table 1.

this effect alone is quantitatively small.45

Second, individuals employed in skill dense cities experience faster growth (γ̂ > 0). An increase

by one standard deviation of the city skill implies an additional growth of 1.6 log points for the

average worker. Through the lens of the model, this implies that workers learn on average more

from skilled individuals.

Third and last, high-skill individuals working in skill dense cities see their skill grow faster than

their low-skill counterparts in the same location (δ̂ > 0). An increase by one standard deviation of

the city average skill implies an additional growth of 1 log point for workers at the 10th percentile

of the skill distribution, compared to an increase of 2.6 log points for workers at the 90th percentile.

From (19), this implies that the learning technology displays strong within-skill complementarities:

skilled workers learn relatively more from skilled partners than their low-skill counterparts.

The estimated returns to local interactions are substantial. Figure 3a displays the predicted

relative skill growth by commuting zones for a worker with the average skill. Migrating from Troyes

to Paris triggers a skill growth increase of 4.5 log points per five years for the average French

worker, while moving from Lyon to Paris implies skill growth gains of 2.2 log points. Altogether,

the predicted skill growth explains 64% of the between-city wage growth variance.

The between-city differences in growth are very heterogeneous across workers due to the estimated

45The estimated wage process is therefore non-stationary. This result rests on the time horizon considered. In
Figure E.4, I estimate the local projection for time horizons between one and five years. For shorter-term wage growth,
I do estimate an auto-correlation parameter β close but under the unit root, in accordance with estimates from the
literature (e.g. Guvenen, 2009). I take this as indirect evidence that, by considering longer-term variation, I estimate
a learning technology that captures permanent variations in human capital rather than transitory, mean-reverting
shocks.
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learning complementarities. Figure 3b plots the difference in predicted growth between Paris, Lyon

and Troyes across the skill distribution. All workers, both low- and high-skill, experience faster

growth when employed in Paris relative to the other two cities. High-skill workers benefit however

more over time from working in high-skill locations. For instance, the skill growth gap between

Paris and Troyes is 2.8 log points for workers in the bottom 10% of the skill distribution. It is 7.3

log points for workers in the top 10%. The same pattern holds between Paris and Lyon, although

the gaps are smaller as the two cities have a more similar skill composition.

Robustness The remaining columns of Table 1 provide robustness exercises to address the

endogeneity concerns mentioned in Section 3.4.46 Column 2 investigates the role of large cities in

shaping the estimated skill growth elasticities. A vast literature, started by de la Roca and Puga

(2017), finds that larger cities boost workers’ wage growth. In the second column, I thus control

for city size. In accordance with the previous literature, I also find that workers in larger cities

experience faster growth. However, the effect of city size is one order of magnitude smaller than

the effect of skill composition: an increase in city size by one standard deviation implies a 0.4 log

points increase in skill growth for the average worker.47 The difference in magnitude justifies why I

abstract from city size in the quantitative model.48

The third column introduces the worker-level controls, and the fourth adds the occupation-by-

firm fixed effects and the control for establishment wage growth. The parameters shaping the returns

to local interactions, g2 and g12, are smaller than in the baseline. However, the two sets of estimates

are not statistically different at the 5%. The same pattern holds when instrumenting workers’ wage

by their past wage to net out transitory shocks (Table E.1, column 2), or adding worker fixed effect

to soak unobserved heterogeneity in abilities to learn (Table E.1, column 7). I conclude that wage

growth heterogeneity across workers and firms does not bias the learning technology estimates.

The fifth column adds the neighborhood of residence by city fixed effects to control for unobserved

spatial heterogeneity in wage growth.49 The last column brings in the instrument variable. The F-

statistic for the weak IV test is well above the conventional thresholds (Stock and Yogo, 2002; Andrews

et al., 2019). The OLS and 2SLS estimates are not statistically different at the 5%. Furthermore,

the two elasticities governing how workers’ skill growth depends on the skill composition of where

they work, γ and δ, remain positive. Comparing workers employed in the same city, in the same

firm, at the same occupation, and living in the same neighborhood, individuals working in the

relatively skill-dense neighborhood experience faster skill growth – and disproportionately so if these

workers are initially relatively skilled.

In summary, Table 1 documents that the skill composition of where individuals work shapes their

46In all of these exercises, I keep the estimate of cities’ TFP constant to their baseline values.
47Most papers in this literature, to the exception of Eckert et al. (2022), identify the effect of size on growth from

spatial correlation between city size and wage growth. In fact, the empirical model of de la Roca and Puga (2017)
coincides with (19) under the restriction that β = 1, γ = 0, and average skills are replaced by city size.

48I also show in Table E.1 (column 1) that the estimated elasticities are not driven by a few large cities, and in
Figures E.6 and E.7 that the elasticities are constant across the city size and inequality distributions.

49Table E.1 (column 3) further adds city by industry by occupation fixed effects to control for spatial heterogeneity
in wage dynamics that differ across occupations and industries and local production complementarities.
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human capital accumulation.50 In addition, the estimates of the learning technology are robust to

controlling for numerous degrees of heterogeneity in wage growth across workers and firms. Finally,

allowing for spatial heterogeneity in wage dynamics across cities, I still find that individuals learn

relatively more from skilled workers, in particular if they are themselves skilled. I now turn to

estimating the remaining parameters of the quantitative model.

4 Model Estimation

The remainder of the structural estimation is split into three parts. In the first part, I define the

model’s geography and time horizon, and accordingly externally calibrate the discount factor. In the

second part, I use the structure of the model to derive estimating equations that identify the first

group of parameters without the need for simulation. In the third part, I calibrate the remaining

parameters. The estimated parameters are presented in Table F.1.

4.1 Definitions

I define a location in the model as a commuting zone. Solving the model for the 297 commuting

zones is computationally challenging as it requires to solve for the entire skill distribution within each

city. Instead, I create 30 city types and restrict all cities within the same type to be homogeneous.

Importantly, there remains 297 cities in the model, and learning interactions happen within cities.

I define the first 10 types as the 10 largest French cities. To construct the remaining 20 types, I

divide France into four geographic districts (North-East, North-West, South-East and South-West).

I then subdivide each district into five types using a k-mean algorithm that clusters cities based on

variables that proxy for the geographic primitives of the model.51 Appendix F.1 contains details on

the variables used in the algorithm, and Figure F.1 plots the resulting city types.

Regarding the model’s time horizon, the model features two lifecycle periods spanning workers’

career.52 In the young phase, individuals work and learn, while they only work in the old period. In

the data, the wage-age profile plateaus around 40 years old. Accordingly, I set a lifecycle period to

fifteen years and map the young period to ages 25 to 40 and the old period to ages between 40 and

55. The model does not provide an explicit moment to estimate the discount factor. I therefore

calibrate it externally, take a yearly discount factor of 0.975, and set β = 0.97515.

50Appendix E.4 also shows that the skill growth elasticities are increasing in the time horizon considered (Figure E.4),
are positive even after controlling for the skill composition of the establishment and firm where workers are employed
(Table E.1, column 4), and are positive for all industries although with substantive heterogeneity (Figure E.9).

51While this classification is not without loss of generality, it is likely to have little impact on the counterfactuals
since cities within each type are rather homogeneous. With five types, the clustering algorithm captures 83% of the
total sum of square residuals (Figure F.2). In addition, clustering cities avoids the over-fitting problem present in
spatial granular settings (Dingel and Tintelnot, 2020).

52Adding more periods would make the model closer to the learning process estimated in Table 1. However, it
would also increase its computation complexity without much effects on the counterfactuals.
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4.2 Model Inversion

In the second step, I invert the model to estimate the parameters dictating the housing supply

and demand, the migration costs, and the the learning technology as described in Section 3. The

estimating equations are derived in Appendix F.2.

Housing From the Cobb-Douglas preferences, α is the housing expenditure share. I read off α

from the French national accounts and set α = 0.2 (INSEE, 2020). Regarding the housing supply

parameters, the housing market clearing conditions relate housing prices to local expenditures

through

log pℓ =

(
1

1 + δ

)
log

(
1− α

H

)
+

(
1

1 + δ

)
log Yℓ, ∀ ℓ, (21)

where pℓ and Yℓ are the housing rental price and total expenditures in city ℓ. I obtain pℓ from the

“Carte des Loyers” (Rental Map), which estimates the average monthly rent per meter square at the

municipal level.53 Meanwhile, the expenditures in city ℓ are given by the payments to the labor

inputs, Yℓ = NℓE[Wℓ], where Nℓ and E[Wℓ] are the employment share and average wage of city ℓ that

I compute from the cross-sectional matched employer-employee dataset. To match the frequency of

the rent data, I set wages at the monthly frequency in euros of 2018. Given {pℓ, Nℓ, wℓ}Lℓ=1 and α,

the housing supply parameters, H and δ, can be recovered from (21) by OLS. Figure F.5c compares

the rent prices in the data with those in the model. While simple, the model captures 71% of the

between-city rent variations.

Migration costs The migration costs are recovered non-parametrically from the observed migra-

tion flows. Using workers’ optimal location decisions and the assumption of symmetric costs, the

model predicts that the cost to move from city l to city ℓ for workers with age a ∈ {y, o} is54

e−2ϑκa
lℓ =

∫ (
na
lℓ(s)

na
ll(s)

/na
ℓℓ(s)

na
ℓl(s)

)
dNa(s), ∀ l,∀ ℓ. (22)

In equation (22), na
lℓ(s) is the number of workers with age a and skill s who migrates from l to ℓ.

The cost to move between these two cities is thus identified from the size of the bilateral migration

flows relative to the number of individuals who do not move. Measuring the right-hand side of (22)

requires observing workers’ skills and migration decisions. I proxy workers’ skills with their wage

quartile.55 Consistently with the model, I measure migration decisions differently for young and old

workers. For young workers, I compute ny
lℓ(s) as the number of workers under 40 born in city l and

53These rents are residualized and correspond to the rent paid for a typical 40m2 apartment in France. I compute
pℓ at the city-level by taking the population weighted average of the municipal rents.

54These migration costs can alternatively capture correlated location preferences – up to welfare considerations. In
this case, (22) captures the autocorrelation in location preferences.

55Proxying workers’ skill with their wage quartile may lead to biased migration costs as wages are the product of
workers’ skill and city TFP. The biases are likely to be small in practice for two reasons. First, the estimated TFP
variance explains less than 2% of the wage variance. Second, (22) estimates migration costs off double difference in
migration flows, and nlℓ(s)/nℓℓ(s) partially nets out the biases that emerge from using wages as a proxy for skills.
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currently living in city ℓ with skill s. For old workers, I compute no
lℓ(s) as the number of workers

with age above 40 that lived in city l 15 years ago and are currently living in city ℓ with skill s.

Both flows are computed from the long-panel.

Figure F.3 plots the estimated migration costs by city of origin. Empirically, 45% of young

workers live in cities different from their birthplace, whereas 20% of workers change locations between

their youth and their old age. Through the lens of the model, these patterns are rationalized with

higher migration costs for old workers. The average migration cost for young workers is 1,255e ,

which corresponds to 43% of their income. The average migration costs for old workers is 1,594e

(44% of their earnings).56

The model predicts substantial heterogeneity in migration probabilities across workers. In

particular, skilled workers born in productive cities are relatively more likely to work there, whereas

skilled workers born in low-TFP locations are more likely to move out. Appendix F.3 provides more

details on the migration heterogeneity.

Learning technology The learning technology parameters g1, g2 and g12 are estimated according

to Proposition 6. In the model, the young period lasts fifteen years. In the data, I use wage

growth at the five-year horizon to have enough statistical power. To get a learning technology with

the appropriate time horizon, I estimate (19) for three age bins: 25 to 30, 30 to 35 and 35 to 40

(Figure E.5). I then set g1 − 1, g2 and g12 as the sum of their respective estimated age-specific skill

growth elasticities.

4.3 Indirect Inference

The remaining 95 parameters govern workers’ productivity and location preferences. I calibrate them

jointly to match salient features of the wage and city-size distributions. I provide first arguments

that justify the identification strategy. I then show numerically how the chosen moments affect the

calibration of the model.

City productivity I set the productivity of each city to match its average wage in the data. In

the model, the average wage of city ℓ is given by

E[Wℓ] = Tℓ

∫
sπℓ(s)ds, ∀ ℓ, (23)

where
∫
sπℓ(s)ds is the average skill of the workers employed in ℓ. The average wage on the left-hand

side can be measured from the matched employer-employee dataset. Holding constant the skill

distribution, a greater TFP implies higher local wages. However, the average skill in city ℓ is

not observed, and it is an equilibrium object that depends on the spatial distribution of TFPs.

Equation (23) therefore cannot be directly inverted to recover Tℓ. Nevertheless, given {Tℓ}Lℓ=1 and

the other parameters, the spatial distribution of skills can be recovered in equilibrium from the

56The estimated migration costs are in utils. The reported estimates are converted to monetary unit through κa
lℓPℓ.

The reported average cost are computed as unweighted average, excluding κa
ℓℓ. As such, they do not represent the

migration costs actually paid by workers.
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model. Equation (23) then defines a fixed point over {Tℓ}Lℓ=1 that can be solved for numerically to

obtain cities’ TFP without taking a stance on how to measure skills empirically.

Worker-level productivity Four parameters govern the distribution of worker-level productivity.

The first two, µy and σy, are the mean and the standard deviation of the skill distribution of young

workers. The level of workers’ skills and cities’ TFP is not separately identified. I thus normalize

the average log skill to zero, and set µy to ensure this normalization holds. Holding cities’ TFP

constant, a greater skill dispersion implies a greater wage variance. I therefore calibrate σy to match

the aggregate wage variance of young workers.

The other two parameters implicitly shape the skill distribution of old workers. First, g0 in the

learning technology (16) dictates the overall amount of human capital accumulation. I set g0 to

match the wage ratio between old and young workers. Second, the variance of the idiosyncratic

learning shocks, σν , influences the dispersion in the skills of old workers. I calibrate σν to match

the variance of log wages for old workers.

Location preferences The remaining parameters – cities’ amenities and the dispersion in the

taste shocks – determine workers’ location preferences. The higher the amenities a city offers,

the more workers want to live there. I set the age-specific local amenities to match the cities’

age-specific employment share.57 The dispersion in idiosyncratic location preferences, θ, governs the

amount of sorting that prevails in equilibrium. When θ ≈ 0, the idiosyncratic location preferences

are very dispersed, and the skill distributions are homogeneous across cities. As a consequence,

there are no spatial differences in within-city wage inequality. As θ increases, skilled workers

concentrate in productive cities, and those places become more unequal. I therefore set θ to match

the cross-sectional correlation between cities’ average wage and wage variance.

Sensitivity How precise is the calibration? Figure F.8 reports how the targeted moments vary as

a function of the parameters in the model. Across the board, the targeted moments are sensitive in

the parameters they are supposed to identify, with a 1% change in the parameter associated with a

change in the targeted moment between 0.5% and 2%. Appendix F.4 describes in more detail this

sensitivity exercise and reports the sensitivity measure of Andrews et al. (2017).

4.4 Estimation Results and Over-identification Exercises

The estimated model implies significant sorting across space (Figure F.6). 30% of the workers in

the top 10% of the skill distribution choose to work in Paris, and this fraction goes as high as 46%

for workers in the top 1%. In contrast, low-skill workers are much less spatially concentrated: only

10% of workers in the bottom half of the skill distribution decide to work in Paris. These differences

across skills in willingness to work in productive cities also vary across the lifecycle. In Appendix F.5,

57As for their TFP, cities’ employment share can theoretically be expressed as a function of the their amenities and
a residual (equation (63) in Appendix F.2). The residual can be computed within the model, and cities’ amenities
{By

ℓ , B
o
ℓ }Lℓ=1 are recovered as a solution to a second fixed point. Figure F.4b plots the estimated amenities.
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I show as an over-identification exercise that, in the model and the data, young skilled workers have

a relatively higher propensity to work in productive cities than their old counterparts.

Worker sorting explains the majority of the between-city wage disparities. In the model, the

between-city wage variance can be decomposed into three terms:

Var[E (logWℓ)] = Var[log Tℓ] + Var[E (logSℓ)] + 2Cov[log Tℓ,E (logSℓ)].

The first term captures how much of spatial wage inequality is explained by TFP gaps. I find the

dispersion in cities’ TFP to rationalizes only 16% of the between-city wage variance – and 1.7% of the

aggregate variance. The second and third terms capture the spatial differences in skill composition

that emanate from the sorting of workers into cities. Together, they explain the remaining 84% of

the between-city wage variance. These estimates align with those of the literature that quantifies

the impact of cities on wage inequality through movers designs (Dauth et al., 2022; Lhuillier, 2022;

Card et al., 2023). In Appendix F.5, I follow this literature and, as a second over-identification

exercise, re-estimate cities’ TFP using a two-way fixed effect model à la Abowd et al. (1999).58 The

newly estimated TFPs can barely be distinguished from the baseline estimates. I conclude that the

small dispersion in TFP across space is a robust feature of the French labor market.

Finally, the model explains 64% of the between-city wage growth variance in the data. To

what extent does the spatial segmentation of learning opportunities cause these differences in wage

growth? And what are the implications for spatial inequality and aggregate productivity? I use the

estimated model to answer these questions.

5 The Tradeoff Between Human Capital and Inequality

In this section, I compare the baseline equilibrium with a counterfactual economy in which interactions

are not segmented by cities. In the counterfactual world, interactions continue to be random, but

the likelihood of an interaction is given by the aggregate skill density rather than the skill density of

the city where individuals work.59 I compare the two economies in steady state. Table 2 summarizes

the key results.

5.1 Learning within Cities and Spatial Inequality

I find that learning opportunities are very spatially concentrated. Figure 4a plots the average skill

growth by workplace in the baseline equilibrium (blue circles). On average, workers’ skills grow

by 15 log points throughout their lifetime. Individuals who work in high-wage cities experience

faster human capital accumulation. For instance, workers in Paris experience a skill growth of 23

log points.

These differences in learning originate both from the sorting of fast-learning workers in productive

58This approach is not used as the baseline as it requires to take a stance on how to empirically measure skills.
59The aggregate skill density of the counterfactual economy may in turn differ from the baseline skill distribution

to the extent that cities shape human capital accumulation.
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Table 2: The consequences of spatially segmented learning opportunities

No segmentation Segmentation Change

Average skill of old workers 1.231 1.246 1.21%

.. due to learning complementarity · · 58.5%

Average wage (e) 3,210 3,296 2.68%

Between-city wage variance 0.007 0.024 0.017

Between-city wage growth variance (log points)

.. by workplace 0.016 13.85 13.85

.. by birthplace 0.000 3.281 3.281

Table contains aggregate statistics on inequality and productivity under two different assumption regarding the segmentation of learning
interactions. First column corresponds to the case in which interactions are random in the whole economy. Second column is when interactions
are fully segmented by cities (baseline, estimated model). The third column is the change between the two equilibrium.

cities (g1 > 1) and from the concentration of learning opportunities in those locations (g2 > 0 and

g12 > 0). To quantify the relative importance of both channels, the orange hexagons in Figure 4a

display the average skill growth by workplace were interactions not segmented by cities – holding

the spatial allocation of workers constant. In this counterfactual economy, workers in Paris continue

to experience on average faster skill growth due to their higher ability to learn. Yet, this sorting

channel is quantitatively small as it explains 2% of the model-predicted between-city skill growth

variance. I conclude that the segmentation of learning opportunities is the primary driver of the

spatial differences in human capital accumulation.

The concentration of learning opportunities in a few cities has two consequences on geographic

disparities. First, it engenders learning inequality. Figure 4b displays the average skill growth by

birthplace against the city’s average wage.60 When workers learn from the individuals around them

and face migration costs, workers born in or near skill-dense cities have an easier access to the local

learning opportunities and enjoy faster human capital accumulation.61 This birthplace learning

premium is substantial. For instance, workers born in Paris have a lifetime skill growth 5.5 log

points higher than workers born in the 25% poorest French cities.62 The impact of individuals’

birthplace on their lifetime learning is exacerbated for middle and high-skill workers who benefit

relatively more from meeting other skilled workers (Figure G.1).

Second, the confinement of learning opportunities to productive cities amplifies spatial wage

inequality. Proposition 2 found that, when individuals learn relatively more from skilled workers,

productive cities get bigger as young workers go there to learn. In addition, these opportunities are

more tailored to skilled workers, and the spatial concentration of high-skill rises. These agglomeration

60The model explains 55% of the wage growth variance across birthplaces in the data.
61Workers born near Paris indeed experience relatively faster skill growth, as shown in Figure G.2.
62The spatial differences in learning feeds into lifetime income inequality. When opportunities are spatially

segmented, the lifetime income gaps between workers born in Paris and those born in the bottom 25% of the wage
distribution is 12%, compared to 5% when interactions are not segmented.
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Figure 4: Between-city differences in human capital accumulation

(a) Lifetime skill growth by workplace
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Note: panel (a) displays the average skill growth by workplace in the equilibrium with segmented interactions (blue circles) and in the equilibrium
without segmented interactions (orange circles) against the baseline city average wage. The blue and orange dashed lines are the (unweighted) fitted
lines. The grey line is the empirical (unweighted) fitted line. Panel (b) displays the average skill growth by birthplace. The same nomenclature as
in panel (a) applies. The size of the markers is proportional to city size.

effects are quantitatively large (Figure G.4): the population of Paris increases from 7% to 14% of

the French workforce when workers learn from the individuals around them, and the propensity of

workers in the top 10th percentile of the skill distribution to work there triples from 11% to 32%.63

The greater agglomeration of skilled workers in a few cities amplifies spatial wage inequality, and

the between-city wage variance rises from 0.007 to 0.024.64

5.2 Local Interactions and Human Capital Accumulation

While the concentration of learning opportunities in space generates geographic disparities, it also

substantially boosts aggregate productivity. The average skill of old workers is 1.2% higher when

individuals learn within cities, and the aggregate average wage rises by by 2.7%.65

63In the presence of costly migration, local interactions agglomerate both young and old workers in productive
cities, as the majority of old workers stay in the locations where they lived when young (Figure G.5a).

64The change in between-city wage inequality can be decomposed into a TFP effect, a skill disparity effect, and a
sorting effect; specifically, ∆Var[E (logWℓ)] = ∆Var[log Tℓ] + ∆Var[E (logSℓ)] + 2∆Cov[log Tℓ,E (logSℓ)]. The TFP
effect reflects the greater agglomeration of workers to productive cities and explains only 1% of the total change in
between-city wage inequality. The remaining two terms capture the heterogeneity in skill composition across cities,
and they explain together the remaining 99%.

65The average wage increases relatively more than stock of human capital as it also takes into account the
greater agglomeration of workers in high-TFP cities. Specifically, the change in the average log wage between the
no-segmentation and the segmentation economies can be decomposed into a TFP term and a human capital term,
E[log W̄ ]−E[logW ] =

∑
ℓ log Tℓ

(
N̄ℓ −Nℓ

)
+E[log S̄]−E[logS], where x̄ refers to the value of x in the counterfactual

economy. In the aggregate, 16% of the wage increase is explained by the larger stock of human capital, and the
remaining 84% are due to the greater agglomeration of workers in productive cities.
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Figure 5: The aggregate consequences of local interactions on human capital accumulation

(a) Lifetime skill growth by initial skill
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(b) Change in lifetime skill growth decomposition
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Note: panel (a) displays the average skill growth by young skill in the equilibrium with segmented interactions (blue circles) and in the equilibrium
without segmented interactions (orange circles). Panel (b) displays the change in skill growth between the baseline economy and the counterfactual
economy across the young skill distribution. The total change is decomposed according to (24). The blue bars plot the “average exposure” effect,
and the orange bars plot the total change.

The spatial concentration of learning opportunities enhances aggregate productivity by boosting

the human capital accumulation of skilled workers without dampening that of other individuals.

Figure 5a displays the average lifetime skill growth as a function of workers’ initial skill when

opportunities are spatially segmented (blue) and when they are not (orange). When individuals

learn from the other workers in their city, workers in the top 10% of the skill distribution see their

skill grow by 22 log points, 4 log points more than their lifetime human capital accumulation when

interactions are not spatially segmented. At the other end of the distribution, the segmentation of

learning opportunities reduces the lifetime skill growth of workers in the bottom 10% of the skill

distribution by 0.1 log points.66

Why do high-skill workers gain from the spatial concentration of learning opportunities? Cities

shape skill growth through two channels. First, high-skill workers agglomerate relatively more

to skill-dense cities, and as result, are more exposed to productive interactions. I refer to this

channel as the exposure effect. Second, high-skill workers are better able to capitalize on skilled

interactions in the presence of strong within-skill learning complementarities. I coin this force the

complementarity effect. Formally, the change in average lifetime skill growth between the baseline

66Learning within cities therefore heightens the difference in human capital accumulation between low- and high-skill.
When interactions are spatially segmented, an increase in initial skill by one standard deviation is associated with
a lifetime skill growth 1.6 log points larger. In contrast, this skill learning premium flattens to 0.6 log points when
individuals learn from every worker.
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and the counterfactual economy can be written

E
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, (24)

where x̄ refers to the value of x when interactions are not spatially segmented, and ∆ℓ ≡ E[logSℓ]−
E[log S̄] is the difference between the average skill in city ℓ in the baseline equilibrium and the

average aggregate skill in the counterfactual equilibrium.67

Learning complementarities are essential in amplifying the effect of cities on human capital

accumulation. Figure 5b plots the skill growth decomposition (24). The exposure effect accounts

for 56% of the faster learning experienced by workers in the top 10%; the complementarity channel

explains the remaining 44% of their learning gains. Meanwhile, the learning complementarities also

minimize the learning losses of workers in the bottom half of the skill distribution.68 By boosting

the gains of high-skill and reducing the losses of low-skill, learning complementarities are crucial

for the impact of cities on human capital accumulation. Aggregating (24) across workers, the

complementarity channel explain 59% of the aggregate increase in human capital.

This section therefore suggests that governments face an equity-efficiency tradeoff. On the one

hand, the spatial segmentation of learning opportunities improves aggregate productivity. On the

other hand, it amplifies spatial wage and learning inequality. As a result, policies aimed at reducing

the spatial concentration of skills may have a detrimental effect on the aggregate stock of human

capital. I conclude this chapter by quantifying how steep is the equity-efficiency tradeoff.

6 The Consequences of Spatial Policies

I study the general equilibrium consequences of a moving voucher policy aimed at offering equal

learning opportunities to workers born in remote locations (Chetty et al., 2016).69 Specifically, the

policy consists of a subsidy granted to young workers born in the 25% poorest locations conditional

on moving to the three largest French cities (Paris, Lyon, and Toulouse). Figure 8a displays the 185

cities treated by the policy. The policy is self-financed within skill and age group to focus on spatial

redistribution.

67The change in skill growth can further be decomposed into a partial equilibrium effect that holds the average

old skill constant, E[logS]−
∑

ℓ

(
n
y
ℓ
(s)

ny(s)

)
E[logSℓ], and a general equilibrium effect, E[log S̄]− E[logS]. The general

equilibrium effects alone are however small (see Figure G.3).
68In the baseline equilibrium, relatively low-skill workers do not sort much across space (Section 4.4). As a result,

the average learning opportunity they have access to is similar to the average nationwide opportunity. This, together
with the strong within-skill learning complementarities, explain why these workers do not lose much from the spatial
segregation of opportunities.

69Chetty et al. (2016) evaluates the consequence of the Moving to Opportunity program in the United States,
which subsidized children and teenagers born in distressed neighborhoods to move to large, productive places. In my
setting, the vouchers are granted to young professionals at the beginning of their career. See Fogli et al. (2023) for a
paper that evaluates the general equilibrium consequences of the MTO program.
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Figure 6: The consequences of spatial policies on spatial learning inequality

(a) Relative expected skill for treated
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Note: panel (a) displays the expected old skill of workers born in cities in the bottom 25% of the city growth distribution relative to the nationwide
expected old skill against the size of the voucher policy. The size of the policy is measured as the aggregate tax used to finance the policy as a
fraction of total GDP. Panel (b) plots the change in expected old skill by birthplace between the baseline equilibrium and the policy equilibrium
when the policy reaches 1.5% of GDP. The blue hexagons are the cities in the bottom 25% of the city growth distribution. The orange circles are
the three largest French cities (Paris, Lyon and Toulouse). The grey rectangles are the remaining cities. The size of the markers is proportional to
the baseline city size.

6.1 Spatial Inequality

Large moving vouchers have the potential to improve the lifetime human capital of workers born

in remote locations. Figure 6a plots the average skill of treated workers at the end of their career

compared to the average worker as a function of the policy size. Absent the vouchers, treated

workers have a human capital 2% lower than the average French worker at the end of their career.

As the size of the vouchers increases, it covers a greater share of the migration cost to productive

cities. Treated workers have an easier access to the learning opportunities present in these cities,

which increases their lifetime human capital. When the voucher reaches 1, 030e, which covers 80%

of the average migration cost and represents 1.5% of GDP, the probability that treated workers

migrate to the three largest French cities rises from 7% to 45%. As a result, workers born in the

25% poorest locations accumulate human capital as much as the average worker.

The policy has heterogeneous treatment effects across workers. Figure 6b plots the change in

expected old skill by birthplace between the baseline equilibrium and the equilibrium when the

policy reaches 1.5% of GDP. Workers born in treated cities (blue hexagons) all experience on average

an increase in their human capital.70 The gains are relatively larger for workers born near Lyon,

Paris, and Toulouse for whom the take-up rate of the policy is larger (Figure H.1). Similarly, skilled

70The average skill obtained by treated workers at the end of their career increases by 1.8%. Combined with an
easier access to high-productivity jobs, the moving voucher policy boosts their lifetime labor income by 5.7%.
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Figure 7: The consequences of local policies on human capital accumulation

(a) Change in old workers’ average skill
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(b) Change in expected skill by initial skill
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Note: panel (a) displays the average old skill against the size of the policy. The blue solid line is the change in average old skill under the voucher
policy. The orange dashed line is the change in average old skill under the quasi-optimal policy. The size of the policy is measured as the aggregate
tax used to finance the policy as a fraction of total GDP. Panel (b) and (c) plot the change in expected old skill across the skill distribution between
the baseline equilibrium and the policy equilibrium when the policy reaches 1.5% of GDP under the moving voucher and the quasi-optimal policy
respectively. The blue bars represent the partial equilibrium, reallocation effect. The orange bars display the total change.

workers are more likely to opt-in the policy (Figure H.3a). Together with their better capacity to

capitalize on the learning opportunities present in productive cities, skilled treated workers benefit

relatively more from the policy (Figure H.3b).

The learning gains experienced by the treated workers come at the expense of slower human

capital accumulation for the non-treated. The policy reallocates to productive cities workers that are

marginally less skilled, and in doing so, worsens the quality of the local opportunities (Figure H.4).

As a result, the policy reduces the learning advantage of workers born in Lyon, Paris and Toulouse

(orange circles in Figure 6b). The policy also negatively affects the human capital accumulation of

non-treated individuals born outside the three largest French cities who used to migrate there to

work and learn (grey rectangles).71

Combining the effects on the treated and non-treated, the policy reduces spatial learning

disparities, and the variance of wage growth across birthplaces decreases from 3.6 to 1.9.72
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6.2 Human Capital Accumulation

The policy also negatively affects aggregate efficiency. Figure 7a displays the change in the average

skill of old workers as a function of the size of the policy. When the policy reaches 1.5% of GDP,

the stock of human capital is 0.3% lower than in the baseline equilibrium.

The policy negatively impacts aggregate efficiency by reducing the spatial segregation of learning

opportunities. The impact of the policy on human capital accumulation can be decomposed into

two effects. First, holding the quality of the local interactions constant, the vouchers reallocate

workers to skill-dense places and increase the pool of individuals who have access to productive

learning opportunities. I refer to this as the reallocation effect. Second, in general equilibrium, the

policy affects the spatial distribution of skills, and with that the quality of the local opportunities. I

name this channel the composition effect. Formally, the percentage change in the average skill of

old workers between the policy and the baseline equilibrium can be decomposed into

E[S̄o]− E[So]

E[So]
=
∑
ℓ

∫ ∫ (
γ(s, sp)

E[So]

)
∆ny

ℓ (s)πℓ(sp)dspds︸ ︷︷ ︸
Reallocation

+

∑
ℓ

∫ ∫ (
γ(s, sp)

E[So]

)
n̄y
ℓ (s)∆πℓ(sp)dspds︸ ︷︷ ︸

Composition

,

where x̄ refers to variable x in the policy equilibrium and ∆x ≡ x̄− x. The dashed orange line and

the dotted grey line in Figure 7a display the reallocation and composition effects. Abstracting from

the composition effect, the moving voucher policy would increase aggregate human capital by 1%.

However, the composition effect more than offsets the partial equilibrium impact of the policy, and

in net, the policy triggers efficiency losses.

Skilled workers fully bear the learning losses generated by the policy. Figure 7b plots the change

in workers’ expected skill at the end of their career between the policy and the baseline equilibrium

across the skill distribution. Holding constant the quality of the local learning opportunities, all

workers would on average experience faster human capital accumulation (orange bars). The gains

would be the largest for workers between the 50th and 90th percentile of the skill distribution for

whom the enhanced access to interactions with skilled workers is most beneficial. However, the

general equilibrium effect neutralizes those partial equilibrium gains, and the policy neither fosters

nor dampens the learning of the bottom 90% of the skill distribution (blue bars). In contrast, the

largest fraction of skilled workers already agglomerates in Lyon, Toulouse and Paris without the

moving vouchers. For those workers, the policy only negatively affects the quality of the interactions

71The learning losses for the non-treated born outside Lyon, Paris and Toulouse are relatively lower for two reasons.
First, not everyone born outside these cities migrates there to work. Second, in general equilibrium, some of these
mid-productivity cities experience an increase in their skill density as skilled workers have marginally less incentives to
agglomerate in productive locations (Figure H.4a). As such, the learning opportunities offered by these places improve.

72The policy also reduces spatial wage inequality by decreasing the spatial concentration of skilled workers. The
between-city wage variance shrinks from 0.024 to 0.018 when the policy reaches 1.5% of GDP.
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Figure 8: The consequences of the moving voucher policy on welfare

(a) Treated cities (b) Change in welfare by birthplace

Note: panel (a) and (b) compares the welfare difference between the baseline equilibrium and the moving voucher equilibrium when the policy
reaches 1.5% of GDP. Panel (a) displays the change in average welfare by birthplace assuming equal weights by skill within birthplaces. Panel (b)
plots the change in average welfare by birthplace and initial skill, grouping cities into slow-growth cities (treated), middle-growth cities (non-treated),
and fast-growth cities (non-treated but targeted by the policy).

they experience, thus reducing their lifetime learning.73

Taking stock, the moving voucher policy reduces geographic learning disparities at the cost of

lowered aggregate efficiency, thus facing a substantial equity-efficiency tradeoff. I conclude this

section by quantifying the welfare consequences of the policy.

6.3 Welfare

I measure welfare through the expected lifetime utility of a cohort. I express welfare changes in

terms of consumption equivalence (Lucas, 1987; Alvarez and Jermann, 2004). Appendix H.1 provides

more details on how the consumption equivalence is calculated, as well as a welfare decomposition

into different channels.

The policy is spatially redistributive: it generates welfare gains for the treated workers, and

welfare losses for the non-treated. Figure 8b displays the average welfare effect of the policy by

birthplaces.74 On the one hand, workers born in treated cities enjoy average welfare gains of 2%.

Those gains are relatively larger for workers born near Lyon, Paris, or Toulouse, and they are mainly

explained by the faster human capital accumulation these workers experience (Figure H.5). On the

other hand, workers born in non-treated cities suffer average welfare losses of 2.3%. For workers

born outside of Lyon, Paris and Toulouse, these losses are entirely caused by the financial cost of

the policy. For the non-treated born in the three largest French cities, the welfare losses are larger,

73Learning complementarities are crucial in shaping the efficiency cost of the policy. Were those absent, the learning
losses experienced by workers in the top 10% of the skill distribution would be halved (Figure H.2).

74The average welfare change by birthplaces are computed under a utilitarian social welfare function that places
equal weights on every worker within the city (see Appendix H.1 for more details). To complement this analysis,
Figure H.6 reports the full distribution of welfare changes.
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going as high as 3.5% for Toulouse, as the policy negatively affects their lifetime human capital.

In the aggregate, the welfare losses outweigh the gains, and the moving voucher policy generates

aggregate welfare losses of 1.3% under a utilitarian social welfare function that places equal weights

on skills and cities. Alternatively, a utilitarian planner must put Pareto weights four times larger on

the treated workers for the policy to be welfare neutral.

Wrapping up, moving vouchers constitute an effective redistributive policy that substantially

reduces spatial learning disparities. However, these vouchers are effective only if they cover a

substantial fraction of the migration costs; taking into account the general equilibrium of the policy,

moving vouchers reduce aggregate inefficiency and trigger welfare losses for non-treated workers.

7 Conclusion

This chapter argues that a tradeoff exists between spatial inequality and human capital accumulation.

I have shown theoretically that this tradeoff is shaped by the relative strength of within- and between-

skill learning complementarities. I have documented that high-skill workers enjoy disproportionately

faster wage growth when working in skill-dense cities. I have argued that this pattern reveals the

presence of strong within-skill learning complementarities. Using the estimated model, I concluded

that the spatial segmentation of learning opportunities increases the aggregate stock of human

capital at the cost of amplified geographic disparities.

This equity-efficiency tradeoff matters for spatial policies. On the one hand, local interactions

engender learning spillovers and spatial misallocation. Place-based policies incentivizing a higher

spatial concentration of skilled workers may correct the local externalities. On the other hand,

the spatial concentration of skills deteriorates the lifetime opportunities of workers born in remote

cities. Vouchers that help workers relocate to productive cities have the potential to reduce these

inequalities at the cost of aggregate efficiency losses.

Skill complementarities are present everywhere. They shape our productivity. They matter

for our preferences for cities. And finally, they define how we learn from each other. All these

dimensions are sources of local spillovers. A natural direction along which to expand this research

agenda is therefore to study spatial policies in the presence of static and dynamic complementarities.

A second promising avenue for this agenda is to study how firms and space interact in shaping human

capital accumulation; while firms may create teams that partially internalize the local learning

spillovers, they are also constrained by the pool of workers they have access to.
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A Theory

A.1 Proof of Proposition 1

Existence The problem of the young is decoupled from that of the old. The old allocation in turn depends on the
aggregate old skill distribution, which follows from the young’s allocation. To prove the existence of an equilibrium, I
impose mild conditions on the distribution of the idiosyncratic learning shocks.

Assumption 2 (Idiosyncratic learning shocks).

Suppose that (i) the support of F is R+, and (ii) for any function h : R+ 7→ R+,
∫
h(ex)dF (e) < ∞ for all x < ∞.

I start from the young spatial allocation. Existence of a solution to (5) is essentially given by Schauder fixed
point theorem. I drop the y superscript for notational simplicity. Let X ≡ [s, s̄]L ⊆ RL

+. Suppose for simplicity that
s > 0, s̄ < ∞, and n(s) < ∞ for all s ∈ X. Then, X is a compact convex subset of RL

+. Define Cb(X,Y ) as the set of
bounded continuous functions that maps X into Y ⊂ R+

L , where Y = [n, n̄]L is also a compact convex subset of RL
+

with n > 0 and n̄ < ∞. When equipped with the sup norm, the vector space Cb(X,Y ) is a Banach space. Define the
operator M : Cb(X,Y ) → Q by

M[ηηη](sss) =

{
n(sℓ)

(
eϑ(sℓTℓ+B

y
ℓ
β+O(sℓ,ηℓ))∑

ℓ′ e
ϑ(sℓTℓ′+B

y

ℓ′+βO(sℓ,ηℓ′ ))

)}L

ℓ=1

for ηηη ∈ Cb(X,Y ), where

O(s, η) =

∫ (∫
E(V o[eγ(s, sp), εεε])dF (e)

)(
η(sp)∫
η(σ)dσ

)
dsp.

The second part of Assumption 2 guarantees that O(s, η) exists. For any ηηη ∈ Cb(X,Y ), we know that M[ηηη](sss) is
bounded. Furthermore, Assumption 1 implies that s → O(s, n) is continuous, and therefore so is sss → M[ηηη](sss). Hence,
M : Cb(X,Y ) → Cb(X,Y ). Finally, O(s, η) is continuous in η since ηℓ(s) > 0 and ηℓ(s) < ∞ for all s ∈ [s, s̄], all
ℓ ∈ {1, 2, . . . , L}, and any ηηη ∈ Cb(X,Y ). It automatically follows that M is a continuous operator, and Schauder fixed
point theorem implies that there exists at least one η⋆ ∈ Cb(X,Y ) such that M[ηηη⋆] = η⋆.

Turning to the old allocation, (4) has a solution for all s as long as no(s) has a solution. Using the first part of
Assumption 2, the old skill distribution (6) can be rewritten

No(so) =
∑
ℓ

∫ ∫
ny
ℓ (sy)π

y
ℓ (sp)F

(
so

γ(sy, sp)

)
dspdsy. (25)

The two integrals always exist. Furthermore, No is continuous differentiable with lims→0+ No(s) = 0 and lims→∞ No(s) =
1, and no(s) exists.

Uniqueness Equation (25) implies that, if the spatial allocation of young workers is unique, then so is No and
therefore the equilibrium. Uniqueness of the young spatial allocation is proven by Banach fixed point theorem. I have
already shown that M maps Cb(X,Y ) onto itself. It therefore only remain to prove that M is a contraction. For any
ηηη,ηηη′ ∈ Cb(X,Y ), we want to show

∥Mℓ[ηηη](sss)−Mℓ[ηηη
′](sss)∥ =

∥∥∥∥∥n(sℓ)
[(

eϑ(sℓTℓ+B
y
ℓ
+βO(sℓ,ηℓ))∑

ℓ′ e
ϑ(sℓTℓ′+B

y

ℓ′+βO(sℓ,ηℓ′ ))

)
−

(
eϑ(sℓTℓ+B

y
ℓ
+βO(sℓ,η

′
ℓ))∑

ℓ′ e
ϑ(sℓTℓ′+B

y

ℓ′+βO(sℓ,η
′
ℓ′ ))

)]∥∥∥∥∥
≤ K∥ηℓ(sℓ)− η′

ℓ(sℓ)∥,

for K ∈ [0, 1). The term ∥ηℓ(sℓ)− η′
ℓ(sℓ)∥ is independent of ϑβ. Meanwhile, the difference in the second equality is

bounded, decreasing in ϑβ, and converging to zero as ϑβ = 0. Hence, for any ηηη and ηηη′ with ∥ηℓ(sℓ) − η′
ℓ(sℓ)∥ > 0,

there always exist a ϑβ small enough such that the inequality holds. It follows that, for ϑβ small enough, M is a
contraction, and the spatial allocation of young workers is unique.

A.2 Uniqueness and Stability of the Symmetric Equilibrium

Proposition A.1 (Stability and uniqueness).

Suppose that Tℓ = T̄ for all ℓ. Then, a symmetric equilibrium exists. If ϑβ is small, this equilibrium is unique.
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Proof. Existence is shown by guessing and verifying that πy
ℓ = ny is an equilibrium. Uniqueness follows from

Proposition 1.

The corollary below derives a bound on ϑβ that ensure the local stability and uniqueness of the symmetric
equilibrium under a functional form restriction on the learning technology. For that, define the relative amenity of
city ℓ

Ba
ℓ ≡ eϑBa

ℓ∑
ℓ′ e

ϑBa
ℓ′
, a ∈ {y, o}. (26)

Corollary A.2.

Suppose that Tℓ = T̄ for all ℓ, and γ(s, s′) = F(s) + G(s)H(s′) for F , G and H some functions. The symmetric

equilibrium is stable if

θβmax
ℓ

max {1− By
ℓ ,B

y
ℓ } |Cov[G(S

y),H(Sy)]| < 1,

and it is unique if L is large and

4θβ
(
max

s
G(s)−min

s
G(s)

)(
max

s
H(s)−min

s
H(s)

)
< 1.

Proof. For simplicity, I do the proof assuming away the idiosyncratic learning shocks. Under TTT = T̄ , the expected
utility of old workers is Vo(s) = sT̄ + c for some constant c. Since the rest of the equilibrium is fully determined
by the young spatial allocation, I omit the y superscript. Given the old utility, the expected future utility of young
workers employed in city ℓ is Oℓ(s) = T̄F(s) + T̄G(s)E[H(Sℓ)]. Let µℓ ≡ E[H(Sℓ)] and µ ≡ E[H(S)]. The spatial
allocation of young workers is given by

nℓ(s) = n(s)

(
eϑBℓ+θβG(s)µℓ∑
ℓ′ e

ϑBℓ′+θβG(s)µℓ′

)
.

Note that only the µµµ ≡ {µℓ}ℓ matters to pin down the young allocation. These local averages are in turn given by

µℓ =

∫
H(s)

(
eθβG(s)µℓ∑

ℓ′ e
ϑB

ℓ′+θβG(s)µℓ

)
dN(s)

∫ (
eθβG(s′)µℓ∑

ℓ′ e
ϑB

ℓ′+θβG(s′)µ
ℓ′

)
dN(s′)

.

Hence, we have reduced the problem to a L-dimensional fixed point. Let M be the operator that maps µµµ onto
itself as defined by the above equation. Note that Assumption 1 requires H(s) to be bounded above and below. Let
h ≡ mins H(s) and h̄ ≡ maxs H(s). Then, we know that M : [h, h̄]L 7→ [h, h̄]L. Clearly, µℓ = µ is a solution to this
fixed point. A sufficient condition for the symmetric equilibrium to be stable is |∂µℓ′Mℓ(µµµ)| < 1 for all pair (ℓ, ℓ′) and

µµµ = {µ}Lℓ=1. A sufficient condition for the symmetric equilibrium to be unique is |∂µℓ′Mℓ(µµµ)| < 1 for all pair (ℓ, ℓ′)
and all µµµ, in which case M is a contraction.75 For any µµµ, the partial derivative of Mℓ w.r.t. µℓ is

∂Mℓ(µµµ)

∂µℓ
= θβ

∫
(H(s)− µℓ)G(s)πℓ(s)

(
1− nℓ(s)

n(s)

)
ds,

75To see this, note that the condition implies ∥DM(µµµ)∥ ≤ K < 1. Then, take two points µµµ and µµµ′ in [s, s̄]L. Define
∆(λ) ≡ λµµµ+ (1− λ)µµµ′, for λ ∈ [0, 1]. Clearly, ∂λ∆(λ) = µµµ−µµµ′ ⊥ λ. Hence, it follows that

M(µµµ)−M(µµµ′) = M[∆(1)]−M[∆(0)] =

∫ 1

0

dM[∆(λ)]

dλ
dλ =

∫ 1

0

dM[∆(λ)]
∂∆(λ)

∂λ
dλ,

where the second equality is from the fundamental theorem of calculus and the third from the chain rule. Thus,
applying the norm ∥ · ∥ on both sides,

∥M(µµµ)−M(µµµ′)∥ = ∥
∫ 1

0

dM[∆(λ)]
∂∆(λ)

∂λ
dλ∥ ≤

∫ 1

0

∥dM[∆(λ)]∥∥∂∆(λ)

∂λ
∥dλ ≤

∫ 1

0

K∥µµµ−µµµ′∥dλ = K∥µµµ−µµµ′∥,

where the first inequality is from the triangle inequality. Since K < 1, M is a contraction.
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and, for ℓ′ ̸= ℓ, it is

∂Mℓ(µµµ)

∂µℓ′
= −θβ

∫
(H(s)− µℓ)G(s)πℓ(s)

(
nℓ′(s)

n(s)

)
ds.

Stability. When the equilibrium is symmetric, µµµ = {µ}ℓ. The derivatives simplify to

∂Mℓ(µµµ)

∂µℓ
= θβ (1− Bℓ)

∫
(H(s)− µ)G(s)n(s)ds = θβ (1− Bℓ)Cov[G(S),H(S), ]

and

∂Mℓ(µµµ)

∂µℓ′
= −θβBℓ′Cov[G(S),H(S)]

for ℓ′ ̸= ℓ. Imposing |∂µℓ′Fℓ(µµµ)| < 1 yields the first condition of Proposition A.1.
Uniqueness. For uniqueness, the above condition is necessary but not sufficient. To derive a sufficient condition,
suppose that there are many cities. Since Sy is bounded, we know that |µℓ − µℓ′ | ≤ s̄− s < ∞ for all (ℓ, ℓ′). That is,
no city will ever have learning opportunities so attractive as to capture the entire employment share. As a consequence,
if amenities are independent of the number of cities, then limL→∞ Bℓ → 0+ for all ℓ. Hence, for L large, the partial
derivatives rewrite

∂Mℓ(µµµ)

∂µℓ
≈ θβ

∫
(H(s)− µℓ)G(s)πℓ(s)ds = ϑβCov[G(Sℓ),H(Sℓ)]

and ∂µℓ′Mℓ(µµµ) ≈ 0. If we knew the local distributions {πℓ}, then uniqueness would be guaranteed by

θβ |Cov[G(Sℓ),H(Sℓ)]| < 1.

The local distributions are equilibrium objects. Yet, it is possible to bound the covariance since we know that the
G(Sℓ) and H(Sℓ)] are bounded. This yields the second condition of Proposition A.1.

A.3 The Sorting of Old Workers

Proposition A.3 (Sorting).
The old allocation satisfies SPAM.

Proof. For the entire proof I omit the old superscript for notational simplicity. I first derive an expression for the
difference in density between ℓ and ℓ′:

πℓ(s)− πℓ′(s) =

(
Nℓ′

Nℓ

)
πℓ′(s)e

ϑ(Bℓ−Bℓ′)
(
eϑs(Tℓ−Tℓ′ ) − E

[
eϑSℓ′ (Tℓ−Tℓ′ )

])
. (27)

This follows from the definition of πℓ(s), Nℓ and (4). Let f : So 7→ R be any measurable function. Using (27), the
difference in the g-transformed mean skill between city ℓ and ℓ′ is

E[g(Sℓ)]− E[g(Sℓ′)] =

(
No

ℓ′

No
ℓ

)
eϑ(Bℓ−Bℓ′)Cov

(
g(Sℓ′), e

ϑSℓ′ (Tℓ−Tℓ′ )
)
.

Take any non-decreasing function g. Then, the above expression implies E[g(Sℓ)] > E[g(Sℓ′)] iff Tℓ > Tℓ′ . That is, the
local skill densities of old workers can be FOSD-ordered by Tℓ.

A.4 The First Order Approximation – general technology

Old workers Linearizing the old allocation is straightforward. From (4), we know that

∂no
ℓ(s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= Bo
ℓ

(
∂no(s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

+ θsn̄o(s)Iℓℓ′

)
,

for Ioℓℓ′ ≡ 1{ℓ′ = ℓ} − Bo
ℓ′ and Bo

ℓ defined in (26). The first term is the GE effect of increasing the TFP of city ℓ′ on
the density of skill s. We can guess that this term will be nil. The second term is the reallocation of workers over
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space. Hence, to a first order, the spatial allocation of old workers is

no
ℓ(s) ≈ n̄o(s)Bo

ℓ + θn̄o(s)Bo
ℓ log

(
Tℓ

T̄

)
s, (28)

where

T o
ℓ ≡ log

(
Tℓ

T̄

)
−
∑
l

Bo
l log

(
Tl

T̄

)
. (29)

When Bo
ℓ = Bo for all ℓ and E[log Tℓ] = log T̄ , this boils down to (7).

Young workers For the young, given (5), we have

∂ny
ℓ (s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= ϑBy
ℓn

y(s)

[
T̄ sIyℓℓ′ + β

(
∂Oℓ

∂ log Tℓ′
−
∑
l

By
l

∂Ol(s)

∂ log Tℓ′

)]
.

The first term is identical to the old allocation. The second term captures how the learning opportunities varies with
TTT . Recall that

Oℓ(s) =

∫ ∫
Vo[eγ(s, sp)]π

y
ℓ (sp)dF (e)dsp.

When TTT = T̄ , Vo(s) = T̄ s+ c for some constant c. In addition, ∂TℓV
o(s)|TTT=T̄ = T̄ sBo

ℓ . Hence,

∂Oℓ(s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= T̄Bo
ℓ′

∫
γ(s, sp)n

y(sp)dsp + T̄

∫
γ(s, sp)

∂πy
ℓ (sp)

∂ log Tℓ′
dsp + c,

where I have redefined γ = γ
∫
edF (e) wlog.76 Using (2), it follows that

∂Oℓ

∂ log Tℓ′

∣∣∣∣
TTT=T̄

−
∑
l

By
l

∂Ol

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= T̄

∫
∂πy

ℓ (sp)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

γ(s, sp)dsp

=
T̄

By
ℓ

∫
∂ny

ℓ (sp)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

(γ(s, sp)− E[γ(s,Sy)]) dsp,

where the second equality follows from the expression for ∂Tℓ′π
y
ℓ (sp). Plugged in the initial expression, we obtain

∂ny
ℓ (s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= θny(s)

(
By

ℓ sI
y
ℓℓ′ + β

∫
∂ny

ℓ (sp)

∂Tℓ′
(γ(s, sp)− E[γ(s, Sy)]) dsp

)
.

The above expression constitutes a fixed point over the functions ∂Tℓ′n
y
ℓ (s). I solve this fixed point in two steps. First,

I guess and verify the general form of the solution:

∂ny
ℓ (s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= θny(s)By
ℓ I

y
ℓℓ′η(s), (30)

for η some city-independent function. From this guess, we also know that the partial derivative of the local skill
density is

∂πy
ℓ (s)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= θny(s)Iyℓℓ′ (η(s)− E[η(Sy)]) . (31)

Second, plugging the guess in the expression for ∂Tℓ′n
y
ℓ (s) verifies it and yields the implicit expression for η:

η(s) = s+ θβ

∫
(γ(s, sp)− E[γ(s, Sy)])ny(sp)η(sp)dsp = s+ θβΘ(s),

where Θ(s) is defined in (8). The above expression is a Fredholm integral equation of the second type. Standard
results can be used to show that a solution exists when the dispersion forces, summarized here by 1/θ, are large
enough.

76Clearly the mean of the learning shock and the average learning γ cannot be separately identified from this
theory. From the estimation, I assume that e is log-normally distributed and I normalize the mean of e to zero.

51



Lemma A.1 (Existence and uniqueness).
Suppose that

θβ

(∫ ∫
|γ(s, sp)− E[γ(s, S)]|2dN(sp)dN(s)

)1/2

< 1.

Then, a solution to (8) exists, is unique, and is continuous and bounded in [s, s̄].

Proof. I omit the y superscript for simplicity. Define K(s, sp) ≡ γ(s, sp)− E[γ(s, S)] so as to rewrite (8) as

η(s) = s+ θβ

∫
K(s, sp)η(sp)dN(s).

This constitutes a Fredholm equation of the second kind. I restrict my attention to solutions to (8) that belong to
L2(dN, [s, s̄]). Under Assumption 1 and s̄ < ∞, we have77∫

|K(s, sp)|2dN(sp) ≤ C and

∫
|s|2dN(s) < ∞,

for C some constant. In addition, K is globally continuous with respect to s. It follows that any solution to (8) is
bounded and continuous in [s, s̄] (Zabrĕıko, 1975, Chapter 2, Theorems 1.7 and 1.8).

Uniqueness of a solution to (8) implies existence (Zabrĕıko, 1975, Theorem 1.2). Equation (8) has a unique
solution when θβ < |λ̄|, where λ̄ is the characteristic value of K with smallest magnitude. This characteristic value
can be solved for when imposing a separability condition on γ (see Section A.5). Without this restriction, solving for
|λ̄| is non-trivial. However, if the Neumann series

ηf (s) = f(s) +

∞∑
j=1

(θβ)j
∫

Kj(x, t)tdN(t) (32)

converges for any function f satisfying
∫
|f(s)|2dN(s) < ∞, where Kj is the j-th iterated kernel of K, then θβ < |λ̄|

(e.g. Zabrĕıko, 1975, Chapter 2). The inequality θβ∥K∥ < 1 provides a sufficient condition for (32) to converge.

From there, the young spatial allocation is given to a first order by

ny
ℓ (s) ≈ ny(s)By

ℓ + θny(s)By
ℓ T

y
ℓ s+ θ2βny(s)By

ℓ T
y
ℓ Θ(s), (33)

where T y
ℓ is defined analogously to (29). The within-city young skill distribution is

πy
ℓ (s) ≈ ny(s) + θny(s)T y

ℓ (s− E[Sy]) + θ2βny(s)T y
ℓ (Θ(s)− E[Θ(Sy)]) . (34)

Accordingly, the young average skill in city ℓ is

E[Sy
ℓ ] ≈ E[Sy] + θT y

ℓ Var[Sy] + θ2βT y
ℓ Cov[Sy,Θ(Sy)],

as claimed in (9).

Aggregates I have argued earlier that, to a first order, there is no aggregate effect of cities on the old skill
distribution, ∂TℓN

o(s) = 0. Differentiating (6) w.r.t. Tℓ′ yields

∂No(so)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

= By
ℓ

∫ ∫ ∑
ℓ

∂πy
ℓ (sp)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

F

(
so

γ(sy, sp)

)
dspdN

y(sy)+∫ ∫ ∑
ℓ

∂ny
ℓ (sy)

∂ log Tℓ′

∣∣∣∣
TTT=T̄

F

(
so

γ(sy, sp)

)
dNy(sp)dsy = 0,

where the second equality follows from (2).

A.5 The First Order Approximation – example

Suppose that the learning technology reads:

γ(s, sp) = F(s) + G(s)H(sp),

77As mentioned in the main text, s̄ = ∞ is possible as long as
∫
|s|2dN(s) < ∞ is satisfied.
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for F , G and H functions that satisfy Assumption 1. This class of learning technology contains (1). The integral
equation simplifies to

η(s) = s+ θβG(s)
∫

(H(sp)− E[H(Sp)]) η(sp)dN
y(sp). (35)

Solving for this fixed point amounts to solving for the integral on the right-hand side. Multiplying both sides by
(H(s)− E[H(s)])ny(s), integrating over s and re-arranging, we get

(1− θβCov[G(Sy),H(Sy)])

∫
(H(s)− E[H(Sy)])η(s)dNy(s) = Cov[Sy,H(Sy)].

From here, it is easy to show that the characteristic root of (35) is |λ̄| = |1/Cov[G(Sy),H(Sy)]|. Hence, a solution
to (35) exists and is unique when θβ|Cov[G(Sy),H(Sy)]| ≤ 1. This condition is tighter than the one laid out in
Lemma A.1. When it is satisfied, we can plug back the expression for the integral into (35) to obtain a closed-form
expression for Θ:

Θ(s) = G(s)
(

Cov[Sy,H(Sy)]

1− θβCov[G(Sy),H(Sy)]

)
.

If the covariance between Sy and H(Sy) is positive, so that, on average, workers learn more from skilled individuals,
then Θ inherits the property of G(s). If G(s) > 0, then worker s learns more from skilled partner, and Θ(s) > 0. If
G′(s) > 0, then so is Θ(s). Furthermore, Θ is independent from F(s). Using G(s) = g2 + g12s and H(sp) = sp yields

Θ(s) = Θ (g2 + g12s) where Θ =
Var[Sy]

1− θβg12Var[Sy]
,

as claimed in the main text.

A.6 The Second Order Approximation

The second order approximations are implemented assuming identical amenities for simplicity.78

Old skill The expected old skill of a worker with initial skill s reads

E[So | s] =
∑
ℓ

(
ny
ℓ (s)

ny(s)

)
E[So

ℓ | s] =
∑
ℓ

(
ny
ℓ (s)

ny(s)

)∫
γ(sy, sp)π

y
ℓ (sp)dsp,

while the average skill of old workers is

E[So] =

∫
E[So | s]dNy(s).

In both expressions I have subsumed the expected learning shock in γ wlog. The partial derivative of the expected
skill for workers with skill s w.r.t. the TFP of city ℓ is

∂E[So | s]
∂ log Tl

=
1

ny(s)

(∑
ℓ

∫
γ(s, s′)

(
∂ny

ℓ (s)

∂ log Tl

)
πy
ℓ (s

′)ds′ +
∑
ℓ

∫
γ(s, s′)ny

ℓ (s)

(
∂πy

ℓ (s
′)

∂ log Tl

)
ds′
)
.

78The aggregate effects on productivity are due to the spatial variations in local skill density, see (34). The local
skill densities are independent of city amenity. Adding city amenity would therefore not change the conclusion.
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By a similar argument as for No, there is no first order effect around TTT = T̄ . Hence, moving to the second order,
differentiate the above expression w.r.t. Tl′ to get

∂2E [So | s]
∂ log Tl∂ log Tl′

∣∣∣∣
TTT=1

=
1

ny(s)

∫
γ(s, s′)

(∑
ℓ

∂2
ll′n

y
ℓ (s)

)
︸ ︷︷ ︸

=0

ny(s′)ds′+

1

ny(s)

1

L

∫
γ(s, s′)ny(s)

(∑
ℓ

∂2
ll′π

y
ℓ (s

′)

)
ds′+

1

ny(s)

∫
γ(s, s′)

(∑
ℓ

∂ln
y
ℓ (s)∂l′π

y
ℓ (s

′)

)
ds′+

1

ny(s)

∫
γ(s, s′)

(∑
ℓ

∂l′n
y
ℓ (s)∂lπ

y
ℓ (s

′)

)
ds′,

where I am using the notation ∂lf(x) = |∂f(x)/∂ log Tl|TTT=T̄ , and the equality on the first line follows from (2).
Meanwhile, the second-order derivative of πy

ℓ (s) evaluated at TTT = T̄ and summed across cities read

∑
ℓ

∂2πy
ℓ (s)

∂ log Tl∂ log Tl′

∣∣∣∣
TTT=T̄

= −L
∑
ℓ

(
∂πy

ℓ (s)

∂ log Tl

∣∣∣∣
TTT=T̄

∂Nℓ

∂ log Tl′

∣∣∣∣
TTT=T̄

+
∂πy

ℓ (s)

∂ log Tl′

∣∣∣∣
TTT=T̄

∂Nℓ

∂ log Tl

∣∣∣∣
TTT=T̄

)
.

Plugged in the expression for the aggregate change in old skill, we therefore obtain

∂2E[So | s]
∂ log Tl∂ log Tl′

∣∣∣∣
TTT=T̄

=
1

ny(s)L

∫
γ(s, s′)

∑
ℓ

(
∂πy

ℓ (s)

∂ log Tl

∣∣∣∣
TTT=T̄

∂πy
ℓ (s

′)

∂ log Tl′

∣∣∣∣
TTT=T̄

+
∂πy

ℓ (s)

∂ log Tl′

∣∣∣∣
TTT=T̄

∂πy
ℓ (s

′)

∂ log Tl

∣∣∣∣
TTT=T̄

)
ds′.

This expression relies entirely on first order terms which we have derived in Section A.4. Using (31), we get∑
ℓ

∂πy
ℓ (s)

∂ log Tl

∣∣∣∣
TTT=T̄

∂πy
ℓ (s

′)

∂ log Tl′

∣∣∣∣
TTT=T̄

= θ2Ill′ (η(s)− E[η(Sy)])
(
η(s′)− E[η(Sy)]

)
ny(s′)ny(s),

which follows from
∑

ℓ IℓlIℓl′ = Ill′ . But I is symmetric function, Ill′ = Il′l. Hence,
∑

ℓ ∂lπ
y
ℓ (s)∂l′π

y
ℓ (s

′) =∑
ℓ ∂l′π

y
ℓ (s)∂lπ

y
ℓ (s

′), and we end up with

∂2E[So | s]
∂ log Tl∂ log Tl′

∣∣∣∣
TTT=1

=
2

L
θ2Ill′Ω(s)

for

Ω(s) ≡ (η(s)− E[η(Sy)])

∫
γ(s, s′)

(
η(s′)− E[η(Sy)]

)
dNy(s′). (36)

We can therefore conclude that, to a second-order around TTT = T̄ , the expected old skill workers with young skill s is

E [So | s] ≈ E [So | s] + ϑ2Var[log Tℓ]Ω(s).

Aggregating across the skill distribution yields (12).

Between-city wage inequality Let ω̄y
ℓ ≡ E[logW y

ℓ ] be the average log wage in city ℓ. Between-city wage
inequality is then defined as

Var[ω̄y
ℓ ] =

∑
ℓ

(ω̄y
ℓ − ω̄y)2 Ny

ℓ ,

for ω̄y ≡ E[logW y] is the aggregate average log wage of young workers. As expected, there is no first order effect on
the variance. The partial derivative of Var[ω̄y

ℓ ] w.r.t. Tl reads

∂Var[ω̄y
ℓ ]

∂ log Tl
= 2

∑
ℓ

(ω̄y
ℓ − ω̄y)

(
∂ω̄y

ℓ

∂ log Tl
− ∂ω̄y

∂ log Tl

)
Ny

ℓ +
∑
ℓ

(ω̄y
ℓ − ω̄y)2

∂Ny
ℓ

∂ log Tl
,
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which, when evaluated at TTT = T̄ , simplifies to ∂lVar[W̄ y
ℓ ] = 0. Hence, turning to the second order effect, we have that

the second order partial derivative of Var[W̄ y
ℓ ] w.r.t. (Tl, Tl′) evaluated at TTT = T̄ is

∂2
ll′Var[ω̄y

ℓ ] =
2

L

∑
ℓ

(∂l′ ω̄
y
ℓ − ∂l′ ω̄

y) (∂lω̄
y
ℓ − ∂lω̄

y) . (37)

All that is required is therefore the first order effect of cities’ TFP on wages. Using (31), the first marginal effect reads

∂lω̄
y
ℓ = 1{ℓ = l}+ θIlℓCov[logSy, η(Sy)].

Using (2), the second marginal effect is

∂lω̄
y =

1

L
.

Combined, (37) rewrites

∂2
ll′Var[ω̄y

ℓ ] =
2

L
Ill′ (1 + θCov[logSy, η(Sy)]) (1 + θCov[logSy, η(Sy)])2 .

where I have used
∑

ℓ Il′ℓIlℓ = Ill′ . I therefore conclude that, to a second order, the between-city variance of wages is

Var[ω̄y
ℓ ] ≈ Var[log Tℓ]

(
1 + θCov[logSy, Sy] + θ2βCov[logSy,Θ(Sy)]

)2
. (38)

A.7 Proof of Lemma 1

Suppose that the learning technology is either supermodular or submodular, γ12(s, sp) > 0 or γ12(s, sp) < 0 a.e. I then
guess and verify that Cov[γ1(s, Sy), Sy] ≥ −1 implies η′(s) ≥ 0. So guess that η′(s) > 0. I first sign Θ′ under this guess.
Note from (8) that Θ can be written Θ(s) = Cov[γ(s, Sy), η(Sy)]. Differentiate Θ to obtain Θ′(s) = Cov[γ′

1(s, S), η(S)].
The covariance of two increasing function is positive while the covariance of an increasing and a decreasing function is
negative. Hence, since η′ > 0, we have that γ12 > 0 implies Θ′(s) > 0 while γ12 < 0 implies Θ′(s) < 0. We can now
verify the guess. Differentiate η and plug in the expression for η in Θ to find

η′(s) = 1 + θβCov[γ1(s, Sy), Sy] + (θβ)2 Cov[γ1(s, Sy),Θ(Sy)].

I distinguish between two cases. First, suppose that γ12 > 0. Then, Cov[γ1(s, Sy), Sy] > 0. Furthermore, since Θ′ > 0,
we also have Cov[γ1(s, Sy),Θ(Sy)] > 0. Hence, η′ > 0. Second, suppose that σ12 < 0. Then, Cov[γ1(s, Sy), Sy] < 0.
Second, since Θ′ < 0 and the covariance of two decreasing functions is positive, we have Cov[γ1(s, S),Θ(S)] > 0.
Hence, η′(s) > 1 + θβCov[γ1(s, S), S] ≥ 0, where the second inequality is from the assumption on γ. This verifies our
guess.

A.8 Proof of Proposition 2

Proposition 2.1 To a first order, (28) and (33) imply that the size of city ℓ is

Nℓ ≈ By
ℓ + Bo

ℓ + θ (By
ℓ T

y
ℓ E[Sy] + Bo

ℓT o
ℓ E[So]) + θ2βBy

ℓ T
y
ℓ E[Θ(Sy)].

Meanwhile, if interactions are not spatially segmented, then

Ñℓ ≈ By
ℓ + Bo

ℓ + θ (By
ℓ T

y
ℓ E[Sy] + Bo

ℓT o
ℓ E[So]) .

When TTT ≈ T̄ , we thus have that for any ℓ such that T y
ℓ > 0, then Nℓ > Ñℓ ⇐⇒ E[Θ(Sy)] > 0. Under Lemma 1, η is

an increasing function. Hence, γ(s, ·) increasing implies Θ(s) = Cov[γ(s, Sy), η(Sy)] > 0. Conversely, γ(s, ·) decreasing
implies Θ(s) < 0. When amenities are the same everywhere, T y

ℓ > 0 ⇐⇒ Tℓ > T̄ , which yields Proposition 2.1.

Proposition 2.2 From (9), the difference between the average skill in city ℓ when interactions are spatially
segmented vs. when they are not is given by

E[Sy
ℓ ]− E[S̃y

ℓ ] ≈ θ2βT y
ℓ Cov[Sy,Θ(Sy)].
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Similarly, from (38), the difference between the between-city wage inequality when interactions are segmented vs.
when they are not is

Sd[ω̄y
ℓ ]− Sd[˜̄ωy

ℓ ] ≈ Sd[log Tℓ]θ
2βCov[logSy,Θ(Sy)].

Hence, when TTT ≈ T̄ , we have: (i) for any ℓ such that T y
ℓ > 0, then E[Sy

ℓ ] > E[S̃y
ℓ ] ⇐⇒ Cov[Sy,Θ(Sy)] > 0,

and (ii) Sd[ω̄y
ℓ ] > Sd[˜̄ωy

ℓ ] ⇐⇒ Cov[logSy,Θ(Sy)] > 0. If γ is supermodular, then γ1(s, ·) is increasing. Hence
Θ′(s) = Cov[γ1(s, Sy), η(Sy)] > 0 (Lemma 1), and Cov[Sy,Θ(Sy)] > 0. Conversely, γ1(s, ·) is decreasing under γ, and
Cov[Sy,Θ(Sy)] < 0.

A.9 Proof of Proposition 3

The second order approximation of E[So] is derived in Section A.6. Define χ(s) ≡ η(s) − E[η(Sy)]. From the
fundamental theorem of calculus,

γ(s, s′) =

∫ s

s

∫ s′

s

γ12(x, y)dydx+ γ(s, s)− γ(s, s) + γ(s, s′).

From the definition of χ,
∫
γ(s, s)χ(s)ds =

∫
γ(s, s′)χ(s′)ds′ =

∫
γ(s, s)χ(s)ds = 0. Therefore, Ω rewrites

Ω =

∫ ∫ ∫ s

s

∫ s′

s

γ12(x, y)χ(s)χ(s
′)dydxdNy(s′)dNy(s) =

∫ ∫
γ12(x, y)Ψ(x)Ψ(y)dxdy,

where Ψ(x) ≡
∫
x
χ(s)dNy(s) and the second equality follows from Fubini’s. Note that Ψ rewrites Ψ(x) = (1 −

N(x)) (E[η(Sy) | Sy ≥ x]− E[η(Sy)]). Hence, Ψ(x) > 0 iff E[η(Sy) | Sy ≥ x] > E[η(Sy)]. But Lemma 1 guarantees
that η is an increasing function. It follows that s → E[η(Sy) | Sy ≥ s] is increasing, and E[η(Sy) | Sy ≥ s] ≥ E[η(Sy) |
Sy ≥ s] = E[η(Sy)]. Hence, Ψ(x)Ψ(y) > 0 and Ω preserves the sign of γ12.

A.10 The Learning Consequences of Local Interactions across Skills

Proposition A.4 (Learning inequality).

Define s⋆ as the skill with the average willingness to sort, η(s⋆) ≡ E[η(Sy)].

1. If γ(s, ·) is increasing for all s, then E[So | s] > E[S̄o | s] if and only if s > s⋆;

2. If γ(s, ·) is decreasing for all s, then E[So | s] > E[S̄o | s] if and only if s < s⋆.

Proof. The second order approximation for E[So | s] is derived in Section A.6. From the fundamental theorem of
calculus, Ω(s) can be rewritten

γ(s, s′) =

∫ s′

s

γ2(s, y)dydx+ γ(s, s).

From the definition of χ, we know that
∫
γ(s, s)χ(s)ds′ = 0, and therefore Ω(s) reads

Ω(s) = χ(s)

∫ ∫ s′

s

γ2(s, y)dyχ(s
′)dNy(s′) = χ(s)

∫
γ2(s, y)Ψ(y)dy.

The proof of Proposition 3 has shown that Ψ(y) > 0. The sign of Ω(s) therefore depends on the product between the
sign of χ(s) and that of γ2. Let s

⋆ be such that η(s⋆) = E[η(Sy)] and η(s) > E[η(Sy)] iff s > s⋆. Lemma 1 guarantees
that such s⋆ exists. For s > s⋆, if γ2 > 0 for all y, then Ω(s) > 0; if γ2 < 0 for all y, then Ω(s) < 0. Opposite equality
exists for s < s⋆.

B Efficiency

B.1 Planner’s problem

Suppose that the planner is utilitarian. The planner places unitary weights on skill and cities and discounts the
future of future generations at rate βS . Let Eℓ[V

y⋆
t (s,εεε) | s] denote the expected utility of young workers with skill s
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working in city ℓ at time t, where the expectation is taken across the unobserved idiosyncratic preferences εεε. Define
Eℓ[V

o⋆
t (s,εεε) | s] for old workers. The planner’s social welfare function,∫ ∑

ℓ

Eℓ[V
o⋆
0 (s,εεε) | s]no⋆

0ℓ (s)ds+
∑
t>0

βt
S

∫ ∑
ℓ

Eℓ[V
y⋆
t (s,εεε) | s]ny⋆

tℓ (s)ds.

The expected utility of workers must be consistent with workers’ location choices. By the property of extreme-value
type one distribution, the expected utility of old workers working in city ℓ is identical to the ex-ante expected utility:

Eℓ[V
o⋆
t (s,εεε) | s] = E[V o⋆

t (s,εεε) | s] = 1

ϑ
log

(∑
ℓ′

eϑco⋆
tℓ′ (s)

)
≡ Vo⋆

t (s).

Similarly for the young,

Vy⋆
t (s) =

1

ϑ
log

(∑
ℓ

eϑ(c
y⋆
ℓ

(s)+βO⋆
ℓ (s))

)
,

where

O⋆
ℓ (s) =

∫ ∫
Vo⋆[eγ(s, sp)]dF (e)πy⋆

tℓ (sp)dsp.

Hence, the social welfare function simplifies to∫
Vo⋆
0 (s)

∑
ℓ

no⋆
0ℓ (s)ds+

∑
t>0

βt
S

∫
Vy⋆
t (s)

∑
ℓ

ny⋆
tℓ (s)ds.

The problem of the planner is to maximize this objective function by choosing a sequence {cccy⋆t , ccco⋆t ,nnny⋆
t ,nnno⋆

t , n⋆
t }∞t=0.

Next, I note that between-skill transfers are not pined down. Intuitively, workers’ utility is linear in income. The
idiosyncratic location preferences generate some concavity across cities but not across skills. Hence, any between-skill
transfer can be sustained to the extent that these transfers are feasible. To see this, suppose that the planner considers
two consumption plans at time t for young workers: cccyt on the one hand, and c̃ccyt on the other hand. The two plans
differ in that c̃y⋆tℓ (s) = cy⋆tℓ (s) + q(s) for some function q. Since q is not city-specific, it does not affect the spatial
allocation, and the learning value of cities is the same in the two plans. Similarly, total output is constant. Hence,
these two plans are jointly feasible if

∫
q(s)dNy(s)ds = 0. Meanwhile, the difference in the aggregate utility of cohort

t between the two consumption plans is

1

ϑ

∫ (
log

(∑
ℓ

eϑ(c
y⋆
ℓ

(s)+βO⋆
ℓ (s))

)
− log

(∑
ℓ

eϑ(c̃
y⋆
ℓ

(s)+βO⋆
ℓ (s))

))
ny(s)ds =

∫
q(s)ny(s)ds = 0.

That is, any function q yields the same aggregate welfare, and between-skill transfers are not determinate. I therefore
restrict my attention to allocation without between-skill transfers, wlog. I also suppose that between-age transfers are
not allowed to focus on the learning externalities.

The planner thus faces the following constraints, where the variables in the parenthesis refer to the associated
Karush–Kuhn–Tucker multiplier:

1. Young and old consumption feasibility (κy
t (s) and κo

t (s)):∑
ℓ

cy⋆tℓ (s)n
y⋆
tℓ (s) ≤

∑
ℓ

Tℓsn
y⋆
tℓ (s), and

∑
ℓ

co⋆tℓ (s)n
o⋆
tℓ (s) ≤

∑
ℓ

Tℓsn
o⋆
tℓ (s), ∀(s, t)

2. Young labor supply (λy
tℓ(s)):

ny⋆
tℓ (s) ≤ ny(s)

(
eϑ(c

y⋆
tℓ

(s)+βO⋆
tℓ(s))∑

ℓ′ e
ϑ(cy⋆

tℓ′ (s)+βO⋆
tℓ′ (s))

)
, ∀(s, t, ℓ).

3. Old labor supply λo
tℓ(s):

no⋆
tℓ (s) ≤ no⋆

t (s)

(
eϑco⋆tℓ (s)∑
ℓ′ e

ϑco⋆
tℓ′ (s)

)
, ∀(s, t, ℓ).
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4. The law of motion for the skill distribution of old workers (νt(s)):

no⋆
t+1(so) =

∑
ℓ

∫ ∫
1

γ(sy, sp)
f

(
so

γ(sy, sp)

)
ny⋆
tℓ (sy)π

y⋆
tℓ (sp)dspdsy, ∀(s, t).

The Lagrangian associated to the planner’s problem is

L =
1

ϑ

∫
log

(∑
ℓ

eϑco⋆0ℓ (s)

)∑
ℓ

no⋆
0ℓ (s)ds+

1

ϑ

∑
t>0

βt
S

∫
log

(∑
ℓ

eϑ(c
y⋆
tℓ

(s)+βO⋆
tℓ(s))

)∑
ℓ

ny⋆
tℓ (s)ds−

∑
t

∑
ℓ

∫
λy
tℓ(s)

(
ny⋆
tℓ (s)− ny(s)

(
eϑ(c

y⋆
tℓ

(s)+βO⋆
tℓ(s))∑

ℓ′ e
ϑ(cy⋆

tℓ′ (s)+βO⋆
tℓ′ (s))

))
ds−

∑
t

∑
ℓ

∫
λo
tℓ(s)

(
no⋆
tℓ (s)− no⋆

t (s)

(
eϑco⋆tℓ (s)∑
ℓ′ e

ϑco⋆
tℓ′ (s)

))
ds−

∑
t

∫
νt(so)

(
no⋆
t+1(so)−

∑
ℓ

∫ ∫
1

γ(sy, sp)
f

(
so

γ(sy, sp)

)
ny⋆
tℓ (sy)π

y⋆
tℓ (sp)dspdsy

)
dso−

∑
t

∫
κy
t (s)

∑
ℓ

(cy⋆tℓ (s)− Tℓs)n
y⋆
tℓ (s)ds+

∑
t

∫
κo
t (s)

∑
ℓ

(co⋆tℓ (s)− Tℓs)n
o⋆
tℓ (s)ds,

where I have kept implicit that

O⋆
tℓ(s) =

1

ϑ

∫ ∫
log

(∑
ℓ′

e
ϑco⋆

t+1ℓ′ [eγ(s,sp)]

)
dF (e)πy⋆

tℓ (sp)dsp.

B.2 Optimal allocation

Solving this maximization problem consists of finding the function s → cy⋆tℓ (s), s → co⋆tℓ (s), s → ny⋆
tℓ (s), s → no⋆

tℓ (s),
and s → no⋆

t (s), for each ℓ ∈ {1, 2, . . . , L} and t ∈ {0, 1, 2, . . . }. This is an infinite-dimensional maximization problem
that is solved using functional derivatives. I lay down the complete argument for the optimality condition regarding the
initial old allocation, co⋆0ℓ and no⋆

0ℓ (s). I then present more succinct derivations for the remaining optimality conditions.
For the remaining of the derivation, I drop the star superscript for notation simplicity.

Initial old Suppose the planner contemplates an alternative consumption plan given by c̃o0l(s) = co0l(s) + εη(s) for
some l and some arbitrary function η(s), while c̃o0ℓ(s) = co0ℓ(s) for ℓ ≠ l. Optimality requires that dL/dε = 0 at ε = 0,
or ∫

η(s)no
0l(s)ds+ ϑ

∫
η(s)no

0l(s)

(
λo
0l(s)−

∑
ℓ

λo
0ℓ(s)

no
0ℓ(s)

no
0(s)

)
ds−

∫
κo
0(s)η(s)n

o
0l(s)ds = 0,

where I have already imposed that
∑

ℓ n
o
0ℓ(s) = no

0(s). Optimality requires that this hold for any function η(s). In
particular, letting η(s) = δx(s) = δ(s−x), where δ is the Dirac delta function, the above optimality condition simplifies
to

1 + ϑ

(
λo
0l(x)−

∑
ℓ

λo
0ℓ(x)

no
0ℓ(x)

no
0(x)

)
= κo

0(x),

where I have also used that the idiosyncratic location preferences guarantee an interior allocation to simplify the
no⋆
0l (x). In the above expression, the only l specific term is the KKT multiplier λo

0l(x). Hence, λo
0l(x) = λo

0(x) for all l,
and we can conclude that κo

0(x) = 1.
Proceeding in a similar fashion for the optimality condition regarding no

0l(s) and using κo
0(x) = 1, we have

Vo
0 (x)− (co0l(x)− Tlx) = λo

0(x).

Multiplying by no
0l(x), summing across l and using the age-skill specific feasibility condition yields λo

0(x) = Vo
0 (x) and

therefore co0l(x) = Tlx.
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Old workers I now derive the optimality conditions for (nnno
t ,nnn

o
ℓt, ccc

o
ℓt) for t ≥ 1. Regarding cccolt, we have∫

κo
t (s)n

o
tl(s)η(s)ds = βt−1

S β

∫ ∑
ℓ

ny
t−1ℓ(s)δcotlOt−1ℓ(s)ds+

ϑβ
∑
ℓ

∫
λy
t−1ℓ(s)n

y
tℓ(s)

(
δco

tl
Ot−1ℓ(s)−

∑
ℓ′

ny
t−1ℓ′(s)

ny(s)
δco

tl
Ot−1ℓ′(s)

)
ds+

ϑ

∫
no
tl(s)η(s)

(
λo
tl(s)−

∑
ℓ

λo
tℓ(s)

no
tℓ(s)

no
t (s)

)
ds,

for any η function, where δxF denote the functional derivative of F w.r.t. x. I anticipate that, at the optimum, it
must be that λy

t−1ℓ(s) ≡ λy
t−1(s) for all ℓ and t. Hence, the second line is equal to zero. From the expression for Otℓ,

we further know that

δco
tl
Ot−1ℓ(s) =

∫ ∫
η[eγ(s, sp)]

no
tl[eγ(s, sp)]

no
t [eγ(s, sp)]

dF (e)πy
t−1ℓ(sp)dsp.

Hence, the optimality condition turns into∫
κo
t (s)n

o
tl(s)η(s)ds = βt−1

S β

∫
η(q)

no
tl(q)

no
t (q)

∑
ℓ

∫ ∫
1

γ(s, sp)
f

(
q

γ(s, sp)

)
ny
t−1ℓ(s)π

y
t−1ℓ(sp)dspdsdq+

ϑ

∫
no
tl(s)η(s)

(
λo
tl(s)−

∑
ℓ

λo
tℓ(s)

no
tℓ(s)

no
t (s)

)
ds,

where I have used the change of variable eγ(s, sp) → q to rewrite the integral on the first line. Using the law of motion
for the aggregate old skill distribution, the two inner most integrals on the first line cancel out with no

t (q). Setting
η(s) = δx(s), we then obtain

κo
t (x) = βt−1

S β + ϑ

(
λo
tl(x)−

∑
ℓ

λo
tℓ(x)

no
tℓ(x)

no
t (x)

)
,

where both sides have been divided by no
tl(x). As for the initial old consumption allocation, there is no l-specific term

in the above expression, and λo
tl(x) = λo

t (x). Hence, κo
t (x) = βt−1

S β ≡ κo
t for t ≥ 1. Setting βS = β, then κo

t = βt for
t ≥ 0.

Turning to the optimality condition w.r.t. no
lt, note that Otℓ(s) is independent of no

tl. Hence, after using
λo
tl(x) = λo

t (x) and κo
t = βt−1

S β, the optimality condition reads

λo
t (x) = βt−1

S β (Tls− cotl(x)) .

Multiplying by no
tl(x), summing across l and using the feasibility condition, this implies λo

t (x) = 0 for all t ≥ 1, and
therefore cotl(x) = Tls.

79

Finally, there remains the optimality condition w.r.t. no
t . There, we have∑

ℓ

∫
λo
ℓt(s)η(s)

no
ℓt(s)

no
t (s)

ds−
∫

νt−1(s)η(s)ds =

∫
λo
t (s)η(s)ds−

∫
νt−1(s)η(s)ds = 0,

for t ≥ 1, where the first equality follows from λo
ℓt(x) = λo

t (x). Setting η = δx(s), we obtain the optimality condition
νt−1(x) = λo

t (x) = 0.

Young workers I finally derive the optimality conditions for (nnny
t ,nnn

y
ℓt, ccc

y
ℓt) for t ≥ 0. For consumption, note that

the learning value of cities is independent of cytl. Hence, the optimality condition w.r.t. cytl is

βt
S + ϑ

(
λy
tl(x)−

∑
ℓ

λy
tℓ(x)

ny
tℓ(x)

ny(x)

)
= κy

t (x).

79The same would hold if we were to allow for transfers within age across skills. Then, feasibility would require∫
λo
t (x)n

o
t (x)dx = βt−1

S β
∑

l

∫
no
tl(x) (Tls− cotl(x)) dx = 0. But λo

t (x) ≥ 0 since it is a KKT multiplier, and therefore
λo
t (x) = 0 for all x. Hence, on the contrary of the young allocation, the old allocation is uniquely pin down even with

across-skill transfers. Why? Between-skill transfers for old workers affect the incentives to learn, and thus the spatial
allocation of workers.
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Hence, here as well, this implies λy
lt(x) ≡ λy

t (x) and κy
t (x) = βt

S ≡ κy
t . When βS = β, then κy

t = κo
t .

I conclude with the optimality condition for ny
tl. There, and crucially, ny

tl affects Otl. The optimality condition is

0 = βt
Sβ

∫ ∑
ℓ

ny
tℓ(s)δny

tl
Otℓ(s)ds+ βt

S

∫
Vy
t (s)η(s)ds−

∫ (
λy
tl(s)η(s)− ϑβ

∑
ℓ

λy
tℓ(s)n

y
tℓ(s)

[
δny

tl
Otℓ(s)−

∑
ℓ′

ny
tℓ′(s)

ny(s)
δny

tl
Otℓ′(s)

])
ds+∫

νt(so)

∫ ∫
1

γ(sy, sp)
f

(
so

γ(sy, sp)

)(
η(sy)π

y
tl(sp) + πy

tl(sy)

[
η(sp)− πy

tl(sp)

∫
η(σ)dσ

])
dspdsydso−∫

κy
t (s) [c

y
tl(s)− sTl] η(s)ds.

Using the spatial equalization of λy
lt, the second line boils down to

∫
λy
t (s)η(s)ds. Using νo

t (s) = 0, the third line
vanishes. Finally, from the expression for Otl(s), we have

δny
tl
Otℓ(s) =

1

Ny
tl

1{ℓ = l}
(∫ ∫

Vo[eγ(s, sp)]dF (e)η(sp)dsp −Otl(s)

∫
η(σ)dσ

)
.

Using η(s) = δx(s) and
∫
δx(s)ds = 1, this simplifies to

∂ntl(x)
yOtℓ(s) =

1

Ny
tl

1{ℓ = l}
(∫

Vo[eγ(s, x)]dF (e)−Otl(s)

)
.

When the planner increases the measure of workers x in ℓ, it has two effects on the opportunities of the city. On the
one hand, it increases the likelihood of interactions with x. The gains from these extra interactions are captured by
the first term. On the other hand, it decreases the likelihood of interactions with every other workers in the city.
When there are a continuum of skills, this congestion cost is captured by the average value of interactions in l, which
is the second term. Combining this expression in the optimality condition, and setting κy

t = βt
S , we obtain

cytl(x) = xTl + β

∫ (∫
Vo[eγ(s, x)]dF (e)−Otl(s)

)
πy
tl(s)ds+ Vy

t (x)− λy
t (x)/β

t
S .

In steady state, it must be that λy
t (s)/β

t
S ≡ λy(s) is constant over time. Then, the optimal allocation is given by

cyl (x) = xTl + τl(x) + Vy(x)− λy(x),

for

τl(x) ≡ β

∫ ∫
(Vo[eγ(s, x)]− E[Vo[eγ(s, Sy

ℓ )]) dF (e)πy
l (s)ds (39)

after substituting the expression for Ol(s). This expression corresponds to (15) in the main text. Using the feasibility
condition, it must be that Vy(x)− λy(x) = −

∑
l n

y
l (x)/n

y(x)τl(x), and we conclude that80

cyl (x) = xTl + τl(x)−
∑
ℓ

(
ny
ℓ (x)

ny(x)

)
τℓ(x). (40)

In the competitive equilibrium, workers’ consumption equate their wage, i.e. cyl (x) = xTl. (40) thus yields (14) in the
main text. Alternatively, (40) can be rewritten

cyl (x) = wl(x) + tl(x),

where tl(x) ≡ τl(x)−
∑

ℓ

(
n
y
ℓ
(x)

ny(x)

)
τℓ(x). Hence, the optimal allocation can be decentralized through the transfers tl(x).

The optimal allocation is given by (39), (40), and the local labor supply,

ny⋆
ℓ (s) = ny(s)

(
eϑ(c

y⋆
ℓ

(s)+βO⋆
ℓ (s))∑

ℓ′ e
ϑ(cy⋆

ℓ′ (s)+βO⋆
ℓ′ (s))

)
, (41)

80If we were to allow for transfers across skill within the young, then the optimal allocation would be cyl (x) =
xTl + τl(x) + t(x), for any function t(x) that satisfies

∫
t(x)ny(x)dx = −

∫ ∑
l n

y
l (x)τl(x)dx.
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which together form a fixed point. This fixed point can be recasted as a function of the local labor supplies only.
Hence, existence of the optimal allocation can be shown using similar techniques as in the proof of the first part of
Proposition 1. Regarding uniqueness, note that if the local labor supplies are unique, then so are the transfers and
consumption. Hence, using similar techniques as in the second part of the proof of Proposition 1, it is possible to show
that, if ϑ is small enough, there exists a unique optimal allocation. Finally, consider the case where Tℓ = T̄ for all ℓ.
It is straighforward to guess and verify that τl(x) = τ(x) and cyl (x) = x is a solution. Hence, when TTT = T̄ and ϑ is
small, the unique optimal allocation is the symmetric allocation – as in the laissez-faire equilibrium.

B.3 Linearizing the social optimum

I now approximate the optimal allocation around TTT ≈ T̄ under the assumption of ϑ small so that the symmetric
allocation is unique when TTT = T̄ . Solving for the perturbed equilibrium requires to solve jointly for (39), (40) and
(41). I drop the star superscript for notational simplicity.

From (41), we have

∂ny
ℓ (s)

∂ log Tl

∣∣∣∣
TTT=T̄

= ϑ

(
ny(s)

L

) {
∂cyℓ (s)

∂ log Tl
+ β

∂Oℓ(s)

∂ log Tl
− 1

L

∑
ℓ′

(
∂cyℓ′(s)

∂ log Tl
+ β

∂Oℓ′(s)

∂ log Tl

)}∣∣∣∣∣
TTT=T̄

. (42)

The net change in the learning opportunities of city ℓ is derived as in Section A.4. To continue, we need to derive the
net change in consumption. From (40),

∂l (τℓ(x)− t(x)) = β

∫
∂lπ

y
ℓ (s) (γ(s, x)− E[γ(s, Sy)]) ds− β

∫
E[γ(Sy, sp)]∂lπ

y
ℓ (sp)dsp.

where ∂lx = ∂x/∂ log Tl|TTT=T̄ , and I have used τℓ(s) = 0 under TTT = T̄ and
∑

ℓ ∂lπℓ(s) = 0 from (2). It follows that the
perturbed consumption allocation is

∂lc
y
ℓ (x) = x1{l = ℓ}+ β

∫
∂lπ

y
ℓ (s) (γ(s, x)− E[γ(s, Sy)]) ds− β

∫
E[γ(Sy, sp)]∂lπ

y
ℓ (sp)dsp. (43)

Using
∑

ℓ ∂lc
y
ℓ (x) = x and the expression for ∂lπ

y
ℓ (s) returns

∂lc
y
ℓ (x)−

1

L

∑
ℓ

∂lc
y
ℓ (x) = xIℓl + βL

∫ (
∂ln

y
ℓ (s)− n(s)

∫
∂ln

y
ℓ (q)dq

)
(γ(s, x)− E[γ(s, Sy)]) ds−

βL

∫ (
∂ln

y
ℓ (sp)− n(sp)

∫
∂ln

y
ℓ (q)dq

)
E[γ(Sy, sp)]dsp.

Combining the expression for Oℓ(s) and cℓ(s) in (42) yields

∂ln
y
ℓ (x) = θny(x)

{
xIℓl
L

+

β

∫ (
∂ln

y
ℓ (s)− n(s)

∫
∂ln

y
ℓ (q)dq

)
(γ(s, x)− E[γ(s, Sy)]) ds−

β

∫ (
∂ln

y
ℓ (sp)− n(sp)

∫
∂ln

y
ℓ (q)dq

)
E[γ(Sy, sp)]dsp+

β

∫
∂ln

y
ℓ (sp) (γ(x, sp)− E[γ(x, Sy)]) dsp

}
.

Guessing and verifying the form of the solution,

∂ln
y(s) = θny(s)

(
Iℓl
L

)
η⋆(s),

we end up with the optimal integral equation

η⋆(x) = x+ θβ

∫
({γ(x, s)− E[γ(x, Sy)]} − {E[γ(Sy, s)]− E[γ(Sy, Sy)]}) η⋆(s)dNy(s)+

θβ

∫
({γ(s, x)− E[γ(Sy, x)]} − {E[γ(s, Sy)]− E[γ(Sy, Sy)]}) η⋆(s)dNy(s).

(44)

Finally, using (43) and the fact that ∂lπ
y
ℓ (s) = ϑny(s)Ilℓ (η

⋆(s)− E[η⋆(Sy)]), the skill-by-city transfers tl(x) can
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be decomposed into a city-specific tax, T , and additional skill-by-city subsidies, dℓ(x). Specifically,

tyl (x) ≈ Tl + dyl (x), (45)

where

Tℓ = −θβ log

(
Tℓ

T̄

)∫
E[γ(Sy, s)] (η⋆(s)− E[η⋆(Sy)]) dNy(s)

and

dℓ(x) = θβ log

(
Tℓ

T̄

)∫
(γ(s, x)− E[γ(s, Sy)]) (η⋆(s)− E[η⋆(Sy)]) dNy(s).

B.4 Proof of Proposition 5

Using covariances, (44) rewrites

η⋆(x) = x+ θβCov[γ(x, Sy), η⋆(Sy)] + θβCov[γ(Sy, x), η⋆(Sy)]−
θβCov[E[γ(s, Sy) | s], η⋆(s)]− θβCov[E[γ(Sy, s) | s], η⋆(s)].

The next lemma provides condition to ensure positive SPAM in the social optimum.

Lemma B.1 (Optimal SPAM).

Suppose that γ is either (weakly) supermodular or submodular. If

θβ (Cov[γ1(x, Sy), Sy] + Cov[γ2(Sy, x), Sy]) > −1,

then η′⋆(x) > 0.

Proof. For notational simplicity, define Θ̃⋆(s) ≡ Cov[γ(s, Sy), η⋆(Sy)] and Υ̃⋆(s) ≡ Cov[γ(Sy, x), η⋆(Sy)], so that the
expression for η⋆ reads

η⋆(x) = x+ θβΘ̃⋆(x) + θβΥ̃⋆(x)− θβCov[E[γ(s, Sy) | s], η⋆(s)]− θβCov[E[γ(Sy, s) | s], η⋆(s)]

Differentiate w.r.t. x and use the expression for Θ̃ and Υ̃ to obtain

η′⋆(x) = 1 + θβCov[γ1(x, Sy), η⋆(Sy)] + θβCov[γ2(Sy, x), η⋆(Sy)].

Plug the expressions for η⋆(x) back in the above,

η′⋆(x) = 1 + θβCov[γ1(x, Sy), Sy] + (θβ)2Cov[γ1(x, Sy), Θ̃⋆(Sy)] + (θβ)2Cov[γ1(x, Sy), Υ̃⋆(Sy)]+

θβCov[γ2(Sy, x), Sy] + (θβ)2Cov[γ2(Sy, x), Θ̃⋆(Sy)] + (θβ)2Cov[γ2(Sy, x), Υ̃⋆(Sy)].

Now, guess that η is increasing. From the expression for Θ̃ and Υ̃, if γ is supermodular (submodular), then Θ̃ and
Υ̃ are increasing. Hence, if γ is supermodular, then all the covariances in the expression above are positive, and
η′⋆(x > 1 > 0, which verifies the guess. Suppose now that γ is submodular. Then, the covariances between γ1, γ2, Θ̃
and Υ̃ are positive since the covariance between two decreasing function is positive. Hence,

η′⋆(x) > 1 + θβCov[γ1(x, Sy), Sy] + θβCov[γ2(Sy, x), Sy].

It follows that θβ (Cov[γ1(x, Sy), Sy] + Cov[γ2(Sy, x), Sy]) > −1 implies η′⋆(x) > 0.

This lemma is sufficient to prove the two elements of Proposition 5.

Proposition 5.1 To a first order, the optimal spatial allocation is given by

ny⋆
ℓ (s) ≈ ny(s)

L
+ θ

(
ny(s)

L

)
log

(
Tℓ

T̄

)
η⋆(s).
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Note that E[η⋆(Sy)] =
∫
η⋆(x)ny(x)dx = E[Sy]. Hence, the optimal number of young workers in city ℓ is

Ny⋆
ℓ ≈ 1

L
+

1

L
θ log

(
Tℓ

T̄

)
E[Sy].

In the laissez-faire equilibrium, the number of young workers in city ℓ is

Nℓ ≈
1

L
+ θ

1

L
log

(
Tℓ

T̄

)
E[Sy] + θ2β log

(
Tℓ

T̄

)
E[Θ(Sy)].

Hence, it is immediate to conclude that, for productive cities, Nℓ > N⋆
ℓ ⇐⇒ E[Θ(Sy)] > 0 (and the converse holds

for unproductive cities). But, we also know from Proposition 2 that sp → γ(s, sp) increasing implies Θ(s) > 0. Hence,
if sp → γ(s, sp), there is too much agglomeration in productive cities. Conversely, if sp → γ(s, sp) is decreasing, there
is too little agglomeration in productive cities.

Proposition 5.2 To a first order, the optimal skill density in city ℓ is

πy⋆
ℓ (s) ≈ ny(s) + θny(s) log

(
Tℓ

T̄

)
(η⋆(s)− E[Sy]) .

In particular, the optimal average skill in city ℓ is

Eℓ[S
y⋆] ≈ E[Sy] + θ log

(
Tℓ

T̄

)
Cov[η⋆(Sy), Sy]

In the laissez-faire equilibrium, we had

Eℓ[S
y] ≈ E[Sy] + θ log

(
Tℓ

T̄

)
Cov[η(Sy), Sy].

Hence, for productive cities, Eℓ[S
y] > Eℓ[S

y⋆] ⇐⇒ Cov[η(Sy), Sy] > Cov[η⋆(Sy), Sy]. A sufficient condition for
Cov[η(Sy), Sy] > Cov[η⋆(Sy), Sy] is η′ > η′⋆ a.e.81 I now show that γ supermodular (submodular) implies η′⋆ > η′

(η′⋆ < η′). Differentiate the expression for η⋆ w.r.t. x and use covariances to simplify the integrals,

η′⋆(x) = 1 + θβCov[γ1(x, Sy), η⋆(Sy)] + θβCov[γ2(Sy, x), η⋆(Sy)].

Taking a similar derivative in the decentralized equilbrium returns

η′(x) = 1 + θβCov[γ1(x, Sy), η(Sy)].

The two functions η and η⋆ are the solution to integrals equations. To prove the propositions, I therefore guess and
verify the statement. First, suppose that γ is supermodular, and guess that η′⋆ > η′ a.e. Since γ is supermodular,
s → γ2(s, x) is an increasing function, and Cov[γ2(Sy, x), η⋆(Sy)] > 0 from Lemma B.1. Hence,

η′⋆(x) > 1 + θβCov[γ1(x, Sy), η⋆(Sy)] > 1 + θβCov[γ1(x, Sy), η(Sy)] = η′(x),

where the second inequality follows from the guess that η′⋆(x) > η′(x). Therefore, η′⋆(x) > η′(x) for all x, which
verifies the guess. Suppose now that γ is submodular and guess that η′⋆(x) < η′(x). Then, by a similar argument,
Cov[γ2(Sy, x), η⋆(Sy)] < 0, and

η′⋆(x) < 1 + θβCov[γ1(x, Sy), η⋆(Sy)] < 1 + θβCov[γ1(x, Sy), η(Sy)] = η′(x),

where Cov[γ1(x, Sy), η⋆(Sy)] < Cov[γ1(x, Sy), η(Sy)] follows from the guess. This verifies the guess, and proves
Proposition 5.2.

Conclusion of Proposition 5 I now conclude by showing that the optimal allocation implies a larger
aggregate stock of human capital. Following exactly the same derivation as in Section A.6, the optimal average skill of

81Take three increasing function, f , g and h. Suppose that g′ > h′. We want to show that Cov[f(S), g(S)] >
Cov[f(S), h(S)]. Since the covariance is a linear operator, we have Cov[f(S), g(S)]−Cov[f(S), h(S)] = Cov[f(S), g(S)−
h(S)] > 0, which follows from the covariance of two increasing functions being positive and g − h increasing from
g′ > h′.
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old workers read

E[So⋆] ≈ E[So] + θVar[log Tℓ]Ω
⋆ where Ω⋆ =

∫ ∫
γ12(s, sp)Ψ

⋆(s)Ψ⋆(sp)dsdsp, (46)

for Ψ⋆(x) = (1−N(x)) (E[η⋆(Sy) | Sy ≥ x]− E[η⋆(Sy)]) defined analogously to Section A.9. Hence, comparing (46)
with (12), we have that

E[So⋆]− E[So] ≈ θVar[log Tℓ]

∫ ∫
γ12(s, sp) [Ψ

⋆(s)Ψ⋆(sp)−Ψ(s)Ψ(sp)] dsdsp.

Suppose for an instant that γ supermodular implies Ψ⋆(s) > Ψ(s), and inversely, γ submodular implies Ψ⋆(s) < Ψ(s).
Then, it immediately follows that E[So⋆] > E[So].

From the definition of Ψ, we have

Ψ⋆(x)−Ψ(x) ∝
∫
x

[χ⋆(s)− χ(s)]dNy(s)

=

∫
x

[η⋆(s)− η(s)]dNy(s)− N̄y(x)E[η⋆(S)− η(S)],

and we know that γ supermodular (submodular) implies η′⋆ > η′ (η′⋆ < η′).
(i) we know that η′⋆ is higher than η′ (ii) we do not know anything about η⋆ − η, in fact it is likely that η⋆ < η

for some; this should, however, be fine, because Ψ seems to be more about η′ than η
Rewrite instead

Ψ(x) =

∫
x

χ(s)dNy(s) =

∫
x

{η(s)− E[η(S)]}dNy(s)

=

∫
x

∫
{η(s)− η(σ)}dNy(σ)dNy(s)

=

∫
x

∫ ∫ s

σ

η′(x)dxdNy(σ)dNy(s)

=

∫
x

∫ {
1{s ≥ σ}

∫ s

σ

η′(x)dx− 1{s < σ}
∫ σ

s

η′(x)

}
dxdNy(σ)dNy(s)

=

∫
x

{∫ s ∫ s

σ

η′(x)dxdNy(σ)−
∫
s

∫ σ

s

η′(x)dxdNy(σ)

}
dNy(s)

C Extensions

C.1 Production complementarities

In this Appendix, I show that Proposition 2 and 3 hold allowing for production complementarities.

C.1.1 Model

The framework is similar to that of Section 2.1 with one modification. Young and old workers differ in their employment
opportunities. To earn an income, young workers need to be employed by the competitive local firms. These firms
produce the freely-trade good with a CES production function,

R(Tℓ,nnn) = Tℓ

(∫
a(s)n(s)σds

) 1
σ

,

where σ ≤ 1 is the elasticity of substitution. Let R(nnn) denote the CES aggregator, R(nnn) = R(Tℓ,nnn)/Tℓ. In contrast to
young workers, old workers have access to a backyard technology. Specifically, an old worker living in city ℓ with skill
s produces sTℓ of the freely traded good.82 This framework nests the model of Section 2.1 under σ → 1−.

82I differentiate young and old work opportunities to simplify the analysis by decoupling the yound and old problem.
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C.1.2 Equilibrium

The problem of young and old workers is unchanged up to the local wages. Local wages for young workers clear the
local labor markets by equating the local labor supply and demand. They are given by

wℓ(s) = Tℓa(s)

(
R[nnny

ℓ (s)]

ny
ℓ (s)

)1−σ

. (47)

The equilibrium is given by (3), (4), (5), (6), and (47). As in the original problem, old workers are passive, and a
unique equilibrium exists when ϑβ is small.

Symmetry Suppose that Tℓ = T̄ for all ℓ. Then, there always exists a symmetric equilibrium characterized by

ny
ℓ (s) =

ny(s)

L
and wℓ(s) = T̄ a(s)

(
R(n̄nn)

n̄(s)

)1−σ

.

Define w(s) = wℓ(s)/T̄ in the symmetric equilibrium. This symmetric equilibrium is guaranteed to be unique when ϑβ
is small enough. For the rest of the analysis, I suppose that wages are increasing in skills in the symmetric equilibrium.
Since I do not impose any conditions on γ, this assumption is wlog.

Assumption 3.
The functions a and ny are such that wages are increasing in s in the symmetric equilibrium, w′(s) > 0.83

C.1.3 Proposition 2 with production complementarities

From (5), the partial derivative of the young allocation w.r.t. Tl is

∆ln
y
ℓ (s) ≡

∂ logny
ℓ (s)

∂ log Tl

∣∣∣∣
TTT=T̄

= ϑ

(
∂wℓ(s)

∂ log Tl

∣∣∣∣
TTT=T̄

−
∑
ℓ′

ny
ℓ′(s)

ny(s)

∂wℓ′(s)

∂ log Tl

∣∣∣∣
TTT=T̄

)
+ ϑβ

(
∂Oℓ(s)

∂ log Tl

∣∣∣∣
TTT=T̄

−
∑
ℓ′

ny
ℓ′(s)

ny(s)

∂Oℓ′(s)

∂ log Tl

∣∣∣∣
TTT=T̄

)
.

The second term is similar to the baseline economy of Section 2.1. From (47), the partial of wages w.r.t. log Tl is

∂wℓ(s)

∂ log Tl

∣∣∣∣
TTT=T̄

= 1{ℓ = l}T̄w(s) + (1− σ)T̄w(s)

(∫
w(s′)ny(s′)

R(nnny)
∆ln

y
ℓ (s

′)ds′ −∆ln
y
ℓ (s)

)
.

Combining the static and dynamic response, and solving for ∆ln
y
ℓ (s), we obtain

∆ln
y
ℓ (s) =

θw(s)

1 + θ(1− σ)w(s)

(
Ilℓ + (1− σ)

∫
w(s′)ny(s′)

R(nnny)
∆ln

y
ℓ (s

′)ds′
)
+

θβ

1 + θ(1− σ)w(s)

∫
(γ(s, sp)− E[γ(s, Sy)])∆ln

y
ℓ (sp)dN

y(sp).

We can now guess a particular form for ∆ln
y
ℓ (s). Specifically, ∆ln

y
ℓ (s) = θIlℓη(s), for some function η(s). Plugging in

the original expression verifies the guess and yields the implicit expression for η(s):

η(s) =
w(s)Σ

1 + θ(1− σ)w(s)
+

θβΘ(s)

1 + θ(1− σ)w(s)
, (48)

for

Σ = 1 + θ(1− σ)

∫ (
w(s′)

R(nnny)

)
η(s′)dNy(s′), (49)

an implicit constant, and

Θ(s) =

∫ (
γ(s, s′)− E[γ(s, Sy)]

)
η(s′)dNy(s′) = Cov[γ(s, Sy), η(Sy)]. (50)

83This is clearly satisfied if a is increasing and ny is (weakly) decreasing. As such, Assumption 3 necessarily holds
for a an iso-elastic function of s and ny a Pareto distribution.
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an implicit function. The function Θ(s) is the same as in the main text, up to the value of the implicit function
η. However, there are two novelties in (48). First, the presence of Σ, which captures the static production
complementarities. If Σ > 1, production complementarities generate further agglomeration. Second, the three effects
are normalized by a term which reflects the effect of other workers with similar skills on workers’ wages. When σ → 1−,
Σ → 1, and η(s) solves (8).

Despite these differences, I now show that Lemma 1 and Proposition 2 extends to σ < 1 when θ is not too large.

Lemma C.1.
Suppose that θ is small such that θ2 ≈ 0. Then, if

θβCov
[
γ1(s, S

y),
w(Sy)

1 + θ(1− σ)w(Sy)

]
> −w′(s),

for all s, SPAM prevails: η′(s) > 0 for all s.

Proof. Differentiate (48) w.r.t. s to get

η′(s) ∝ w′(s)Σ + θβCov[γ1(s, Sy), η(Sy)] + θ2β(1− σ)Θ′(s)w(s)− θ2β(1− σ)Θ(s)w′(s).

When θ2 ≈ 0, this expression simplifies to

η′(s) ∝ w′(s)Σ + θβΣCov
[
γ1(s, S

y),
w(Sy)

1 + θ(1− σ)w(Sy)

]
.

after plugging in the expression for η(Sy). Furthermore, plugging the expression for η in Σ and using θ2 ≈ 0 yields84

Σ =
1

1− e
for e ≡

∫
w(s)ny(s)

R(nnny)

θ(1− σ)w(s)

1 + θ(1− σ)w(s)
ds ∈ (0, 1). (51)

It is then automatic to see that the condition stated in Lemma C.1 implies η′(s) > 0.

The condition stated in Lemma C.1 nests that of Lemma 1 under a(s) = s and σ → 1−, such that w′(s) = 1.
When σ < 1, it necessarily holds if the learning technology is supermodular. When the technology is submodular,
Lemma C.1 imposes a bound on how submodular the function can be.

With Lemma C.1, it is now possible to generalize Proposition 2 to the case with σ < 1.

Proposition C.1.
Suppose that θ is small such that θ2 ≈ 0 and Lemma C.1 holds. Then,

1. If γ(s, ·) is increasing for all s, (un)productive cities are (smaller) larger when interactions are spatially
segmented; the converse holds when γ(s, ·) is decreasing;

2. If γ is supermodular, the average skill of young workers in (un)productive cities is (smaller) larger when
interactions are spatially segmented, which leads to greater between-city wage variance amongst young workers;
the converse holds when γ is submodular.

Proof. Let x̃ denote the variable x when interaction are not spatially segmented. Then, the equilibrium solves

η̃(s) =
w(s)Σ̃

1 + θ(1− σ)w(s)
,

where Σ̃ is defined analogously to (49) w.r.t. η̃(s). Solving for Σ̃ implies Σ̃ = 1/(1− e) ≈ Σ, where the approximation
is w.r.t. θ2 ≈ 0. Accordingly, the difference between the equilibrium with and without spatially segmented interaction
is

η(s)− η̃(s) =
w(s)

(
Σ− Σ̃

)
1 + θ(1− σ)w(s)

+
θβΘ(s)

1 + θ(1− σ)w(s)
≈ θβΘ(s)

1 + θ(1− σ)w(s)
.

Proposition C.1.1 immediately follows: γ(s, ·) increasing implies Θ(s) > 0 (Lemma C.1), and therefore η(s) > η̃(s).
Meanwhile, the segmentation of interactions amplifies spatial inequality to the extent that η(s)− η̃(s) is increasing.
Differentiating w.r.t. s, we get

η′(s)− η̃′(s) ∝ w′(s)
(
Σ− Σ̃

)
+ βΘ′(s)

(
θ + θ2(1− σ)w(s)

)
− θ2β(1− σ)Θ(s)w′(s) ≈ θβΘ′(s).

84The constant e ∈ (0, 1) since constant returns to scale imply
∫
w(s)n(s)ds = R(nnn).
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Proposition C.1.2 then follows: γ supermodular (submodular) implies Θ′ > 0 (Θ′ < 0), and therefore η′(s) > η̃′(s) for
all s.

C.1.4 Proposition 3 with production complementarities

Proposition 3 automatically generalizes to the presence of static complementarities – conditional on Lemma C.1
holding. To see that, three observations are useful. First, the expression for the average skill is the same regardless of
σ. Second, the derivation of the second-order approximation is independent to the definition of η. Third, the proof of
Proposition 3 only relies on η increasing.

D Quantitative Model

D.1 Workers’ problem

Consumption Young and old workers solve a standard consumption choice problem that maximize their static
utility. A worker with income y thus consumes

cℓ(y) = αy ; hℓ(y) =

(
1− α

pℓ

)
y

on the numeraire and the housing good respectively. Accordingly, the local price index is Pℓ = p1−α
ℓ and indirect

utility in city ℓ for a worker with income y is y/Pℓ.

Old workers Worker’ income are made of three sources: their wage, the subsidy they might receive, and the flat
tax. Hence, the income of an old worker with skill s living in city l when young and choosing to live in city ℓ when old
is yo

lℓ(s) = wℓ(s) + τo
lℓ(s)− t. Given this income, old workers solve a static location choice problem,

V o
l (s,εεε) = max

ℓ

ylℓ(s)

Pℓ
+ εℓ − κo

lℓ.

Letting mo
l (s) denote the spatial distribution of old workers before their new location choice, the spatial allocation of

workers is given by

no
lℓ(s) = mo

l (s)

(
eϑ(y

o
lℓ(s)/Pℓ+Bo

ℓ−κo
lℓ)∑

ℓ′ e
ϑ(yo

lℓ′ (s)/Pℓ′+Bo
ℓ′−κo

lℓ′)

)
, (52)

where no
lℓ(s) is the measure of workers moving from l to ℓ with skill s when old. Consistently, the (unconditional)

measure of old workers in city ℓ is

no
ℓ(s) =

∑
l

no
lℓ(s),

and the mass of old workers in ℓ is No
ℓ =

∫
no
ℓ (s)ds. Finally, let Vo

l (s) ≡ E[V o
l (s,εεε) | s, l] be the expected utility before

the realization of the idiosyncratic preferences εεε, given by

Vo
l (s) =

1

ϑ
log

(∑
ℓ

eϑ(y
o
lℓ(s)/Pℓ+Bo

ℓ−κo
lℓ)

)
.

Young workers Young workers solve a dynamic location choice problem which reads

V y
l (s,εεε) = max

ℓ

yy
lℓ(s)

Pℓ
+ εℓ − κy

lℓ + β

∫ ∫
Vo
ℓ [eγ(s, sp)] dF (e)πℓ(sp)dsp,

where yy
lℓ(s) = wℓ(s) + τy

lℓ(s)− t. In a similar fashion as for the old workers, the spatial allocation of young workers is
given by

ny
lℓ(s) = my

l (s)

(
eϑ(y

y
lℓ
(s)/Pℓ+B

y
ℓ
−κ

y
lℓ
+βOℓ(s))∑

ℓ′ e
ϑ(yy

lℓ′ (s)/Pℓ′+B
y

ℓ′−κ
y

lℓ′+βOℓ′ (s))

)
. (53)

I define ny
ℓ (s) and Ny

ℓ in the same manner as no
ℓ(s) and No

ℓ .
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D.2 General equilibrium

In equilibrium, the markets must clear, the expected spatial distribution of workers has to be consistent with workers’
location choices, and the aggregate skill distribution must be consistent with workers’ learning.

Housing prices Housing prices must clear the housing market in each location, and therefore they must satisfy85

pℓ =

(
(1− α)Yℓ

H

) 1
1+δ

, (54)

where Yℓ = Tℓ

∫
s
∑

a n
a
ℓ (s)ds = Eℓ[W ]Nℓ is the output produced in city ℓ. Taking logs give (21).

Skill density The within-city skill density of location ℓ must be consistent with workers’ location choices, given
by

πℓ(s) =

∑
a n

a
ℓ (s)∑

a N
a
ℓ

. (55)

Skill distributions There are two distributions to be solved for. First, the location-specific distribution of old
workers. Define Mo

ℓ (s) as the mass of old workers that lived in city ℓ when young and that obtained a skill less than s.
Given the learning process, this is given by

Mo
ℓ (s) =

∫ ∫
ny
ℓ (x)πℓ(y)F

(
s

γ(x, y)

)
dydx. (56)

From here, one can define the location-specific measure as mo
ℓ(s) = ∂Mo

ℓ (s)/∂s and the aggregate old skill density as
no(s) =

∑
ℓ m

o
ℓ(s). Finally, given the birth process, the location-specific distribution of young workers is my

ℓ (s) =
Ny

ℓ n
y(s).

Definition D.1 (Steady state equilibrium).

A steady state equilibrium is a collection of young and old spatial allocation, s → ny
lℓ(s) and s → no

lℓ(s) for each

l, ℓ ∈ {1, 2, . . . , L}, city-specific skill distribution, s → my
ℓ (s) and s → mo

ℓ(s) for each ℓ ∈ {1, 2, . . . , L}, and housing

prices {pℓ}Lℓ=1, such that

1. Taking as given the location decisions of other workers and housing prices, the young and old allocation satisfy

(53) and (52) respectively;

2. The local skill densities are consistent with workers’ location decisions, given by (55);

3. Given young workers’ location decisions, the city-specific young and old skill distribution are given by my
ℓ (s) =

Ny
ℓ n

y(s) and (56) respectively;

4. Given workers’ location decisions, housing prices solve (54).

D.3 Algorithm

I use two different algorithms to solve for the steady state equilibrium depending on whether I am estimating the
model or computing counterfactuals. Both algorithms are constituted of an inner loop and an outer loop. The inner
loops are identical. Given city fundamentals, TTT and BBB, housing prices ppp, and skill distributions mmmy and mmmo, they
iterate on (53) and (52) to solve for the local skill densities, πππ.

Estimation To estimate the model, I need to solve for the steady state equilibrium and recover the city
characteristics, TTT and BBB. The targeted moments for TTT and BBB imply that, when TFP and amenities are estimated, I
match the city average wage and city size, and therefore cities’ output, Eℓ[W ]Nℓ. Given estimates for (α, δ,H), I can
therefore read off (54) the housing prices that must hold in the baseline steady state equilibrium. To solve for the
baseline steady state equilibrium, the outer loop therefore takes ppp as given and iterate on the skill distributions, mmmy

and mmmo, as well as on the city TFP and amenities through (23) and (63).

Counterfactual In the counterfactuals, city TFP and amenities are taken as given. The outer loop therefore
iterates on (54) to solve for the housing prices, as well as on my

ℓ (s) = Ny
ℓ n

y(s) and (55) to solve for mmmy and mmmo.

85Note that this implies Πℓ = p1+δ
ℓ = (1−α)Yℓ, where Πℓ are the revenues earned by the representative land owner.
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Figure E.1: The geography of commuting zones and municipalities

Simulation I use the model to simulate a two-period panel datasets with 1, 000, 000 workers. The simulation
follows the structure of the model. All the variables, including the local skill densities, are consistent with the model’s
general equilibrium. As in the data, I truncate the wage distribution at the 5% and 99.9% percentile.

E Descriptive Evidence

E.1 Data description

As described in the main text, the French matched employer-employee dataset comes in two format. The first format
is a long-panel that tracks the entire labor market history of 4% of the French workforce. The second format is a
repeated short-panel (two years) that provides information on the job providing the main source of labor income
within each year for the universe of the French workforce.86 I apply a first set of similar restrictions on both datasets:

◦ Exclude workers younger than 25 and older than 55 year old;
◦ Exclude workers employed in the private sector;
◦ Exclude the agriculture, education and health industries;
◦ Keep only workers employed full-time;87

◦ Truncate the yearly wage distribution at the 5% and 99.9%.

The long-panel comes at the job-spell level, where a job-spell is defined as a year-establishment-occupation. Workers
are observed multiple times within the same year if they switch jobs. Since the focus of this paper is on middle- and
long-term wage growth, I aggregate the long-panel at the yearly level. To do so, I keep for each worker the job that
provides the highest earnings within the year. I exclude from the sample jobs that last less than 30 days, and I also
exclude workers that have been unemployed for more than three consecutive years.

E.2 Neighborhood

As explained in Section 3.1, I define a neighborhood as a municipality, or commune in French. Commune are the most
granular administrative division in France. They are also the most granular geographic unit I observe in the French
matched employer-employee dataset.

Commune were introduced with the French revolution in 1789 to unify parishes (the houses and land around a
church) and chartered cities (collection of parishes) under a common legal definition. By the end of the 18th century,
40,200 municipalities were created. Two reforms at the beginning of the 19th century (1831 and 1837) increased their
administrative powers. Since then, both the geographic and administrative boundaries of municipalities have been
stable over time. For instance, around 90% of commune are have similar geographic boundaries as when they were
created during the French revolution.

86In the short-panel, the worker ID are shuffled every year so that it is not possible to link workers for more than
two periods.

87Full-time jobs are identified first by their contracts, and second by the fact that the individuals work at the job
more than three hours per worked day.
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In 2009, France had 36 783 communes. Their legislative power are analogous to civil townships and incorporated
municipalities in the United States. In terms of geography, they are closer to ZIP codes. The three largest French
communes, Paris, Lyon and Marseille, are themselves sub-divided into 20, 9, and 16 arrondissements. I observe those
in the French matched employer-employee dataset, and therefore refer to these arrondissements also as neighborhoods.

Figure E.1 helps visualize the granularity of communes. The left map is a map of the French commuting zones,
where I have highlighted in orange the two largest French cities, Paris and Lyon. The two maps on the right are the
commune included in the Paris (112 communes) and Lyon (191 communes) commuting zones. The orange shade
represents the average wage of the neighborhood relative to the French average. Grey communes are communes
excluded from the sample due to their small sample sizes. In total, 112 and 191 communes are kept in the sample in
Paris and Lyon respectively. Throughout France, the average number of commune by commuting zones is 40. The
city with the smallest number of commune is Chatillon (0.02% of the French workforce) with 4 communes. The city
with the largest number of commune is Roissy (2.7% of the French workforce) with 212 communes.

E.3 Identification

In this section, I lay down how (19) identifies the learning technology. I do under the assumption of g12 = 0 to reduce
the length of the derivation. With a slight abuse of notation, let sit denote log sit. Then, the old skill of a worker i
who starts with skill syi and meets with a partner with skill spi is

soi = g0 + g1s
y
i + g2s

p
i + ei. (57)

Equation (57) always rewrite

soi = g0 + g1s
y
i + g2E [sj | ℓyi ] + ei + νi, (58)

where ℓyi is the city where i works when young, and νi ≡ g2 (s
p
i − E[sj | ℓyi ]). Equation (58) has two error terms. First,

ei captures the learning sources other than interactions. Second, νi measures the difference between the particular
interaction experienced by i and the average interaction in city ℓyi . If the two error terms are uncorrelated with syi
and E[sj | ℓyi ], then this justifies estimating the local projection (58) by OLS.

Assumption 6 guarantees the two error terms are orthogonal to the regressors. First, Assumption 6.2 implies that
E[siei] = E[E[sj | ℓyi ]ei] = 0. Second, Assumption 6.1 implies that νi is uncorrelated with the regressors. To see why,
note that

E[νi] = E[E[νi | syi , ℓ
y
i ]] = E[g2E[syi − E[sj | ℓyi ] | s

y
i , ℓ

y
i ]] = 0,

where the first equality follows from the L.I.E., the second from the definition of νi, and the third from E[spj | syi , ℓi6y] =
E[sj | ℓyi ] when interactions are random within cities. A similar argument implies E[νisyi ] = E[νiE[sj | ℓyi ]] = 0.

These arguments justify estimating the learning technology through the local projection

soi = α+ βsyi + γE[sj | ℓyi ] + ui. (59)

Is (59) exposed to the standard reflection problem (Manski, 1993)? In particular, when estimating the static framework
si = α+ βE[sj | ℓyi ] + ui by OLS, then β̂ = 1 regardless of the presence of peer effects. I now show that (59) does not

suffer from this problem, and in particular, that β̂ = g2.

Proposition E.1.
If si and Eℓ

y
i
[sj ] are not colinear, (59) yields γ̂ = g2.

Proof. By Frisch-Waugh–Lovell, we know that estimating

ϵi = a+ bνi + ζi (60)

by OLS generates b̂ = γ̂, where ϵi and νi are defined by

soi = a+ bsyi + ϵi, (61)

Eℓ
y
i
[sj ] = a + bsyi + νi. (62)

Using standard OLS algebra, the coefficient estimated by (61) are

â = E[soi ]− b̂E[syi ] ; b̂ =
Cov (syi , s

o
i )

Var[syi ]
.
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Using the learning process (57) yields

b̂ = g1 + b̃g2 ; ϵi = ã+ g2
(
spi − b̃syi

)
+ ei

for ã some constant and

b̃ ≡ Cov (syi , s
p
i )

Var[syi ]
=

E [Cov (syi , s
p
i | ℓyi )]

Var[syi ]
+

Cov
(
E[syj | ℓyi ],E[sj | ℓyi ]

)
Var[syi ]

=
Cov

(
E[syj | ℓyi ],E[sj | ℓyi ]

)
Var[syi ]

,

where the second equality follows from the law of total covariance and the last from the random matching assumption
within cities. Likewise, the slope estimated by (62) is

b̂ =
Cov (syi ,E [sj | ℓyi ])

Var [syi ]
=

Cov
(
E
[
syj | ℓyi

]
,E [sj | ℓyi ]

)
Var [syi ]

= b̃ ; νi = E[sj | ℓyi ]− â− b̃syi

Hence, altogether, the estimated slope of (60) is

b̂ =
Cov[ϵi, νi]
Var[νi]

= g2

Cov
[
spi − b̃syi , νi

]
Var[νi]

 .

Expanding the numerator, using the definition of b̃ and νi, and the law of total covariance, it is easy to conclude
that Cov(spi − b̃syi , νi) = Var(νi). Hence, b̂ = g2 if Var[νi] ̸= 0, which necessarily holds if syi and E[sj | ℓyi ] are not
colinear.

71



E.4 Additional Tables and Figures

Table E.1: The returns to local interactions (robustness)

Dep. variable 5-year wage 3-year wage ∆ 3-year wage

(1)

OLS

(2)

2SLS

(3)

OLS

(4)

OLS

(5)

OLS

(6)

OLS

(7)

2SLS

Skill (g1) 1.003 1.023 0.940 0.975 0.978
(0.002) (0.003) (0.004) (0.002) (0.002)

City skill (g2) 0.119 0.110 0.053
(0.010) (0.005) (0.003)

Skill × city skill (g12) 0.065 0.091 0.053
(0.019) (0.007) (0.006)

Neighborhood skill 0.063 0.037
(0.005) (0.008)

Wage × neighborhood skill 0.083
(0.019)

Establishment wage 0.072
(0.006)

Firm wage 0.011
(0.006)

∆ Skill (g1) -0.080 0.040
(0.009) (0.098)

∆ Local skill (g2) 0.042 0.040
(0.015) (0.023)

∆ Skill × local skill (g12) 0.280 0.161
(0.017) (0.078)

Controls

Worker-level · ✓ ✓ ✓ · · ·
Distance work-residence · · ✓ ✓ · · ·

Instrument

Skill ∼ past skill · ✓ · · · · ·
∆ Skill ∼ past ∆ skill · · · · · · ✓

Fixed effects

Year ✓ ✓ · · ✓ ✓ ✓
Year × residence × city · · ✓ ✓ · · ·
Year × occupation × industry × city · · ✓ · · · ·

Obs. 971,401 971,401 971,401 508,236 520,938 520,938 520,938
Weights City size−1 Unit Unit Unit Unit Unit Unit
Period 2009-2019 2009-2019 2009-2019 2009-2019 2002-2019 2002-2019 2002-2019
F-stat. · 103,412 · · · · 20,308

Standard errors clustered at the city level for column 1 and 2, at the neighborhood of work for 3 and 4, and at the worker level for 5 to 7. Sample includes all workers between 25 and
40 year old. Worker-level controls include age, job, occupation, and industry tenure fixed effects, and a dummy for employer switching. Occupations and industry measured at the
one-digit level. First column weights observation by the inverse of the size of the city. Second column instrument present skills by the skills in the previous year. To introduce worker
F.E., the last three columns extend the sample from 2002 to 2019 and looks at 3-year skill growth. Column 6 estimates the local projection in first difference to remove the worker
F.E., and column 7 instruments skill change by past skill change to take into account the autocorrelation in the error term.
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Figure E.2: Average wage at the beginning and the end of the 2010s

(a) By commuting zones

City average wage: 2009 - 2014 (log points)
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(b) By municipalities

Neighborhood wage: 2009 - 2014 (log points)
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Note: left panel shows the average wage by commuting zone between 2009-2014 on the x-axis against the average wage in the same commuting zone
between 2015-2019 on the y-axis. The marker size is proportional to the size of the commuting zone. The right-panel shows the same relationship
but at the municipality level. The marker size is proportional to the size of the municipality. The aggregate average wage is normalized to zero in
both periods for both panels. The blue solid line is the (unweighted) best fitted line between the 2009-2014 and 2015-2019 average wages. The grey
dotted line is the 45 degree line.

Figure E.3: Nominal and real wage growth

5-year wage growth (log points)
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Note: figure shows the relationship between real wage growth and nominal wage growth by commuting zones. Real wage growth are computed
as Eℓ[logwit+1/wit] − α log(pt+1ℓ/ptℓ), where the second term is the growth in rental prices. The housing expenditure share is set to 0.2 (see

Table F.1). The marker size is proportional to the size of the commuting zone.
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Figure E.4: The returns to local interactions by time horizon

(a) Skill

Horizon (year)

1 2 3 4 5

L
og

 p
oi

nt
s

0.99

1.00

1.01

(b) City skill

Horizon (year)

1 2 3 4 5

L
og

 p
oi

nt
s

0.04

0.06

0.08

0.10

0.12

(c) Skill × city skill

Horizon (year)

1 2 3 4 5

L
og

 p
oi

nt
s

0.00

0.05

0.10

Figure E.5: The returns to local interactions by age
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Figure E.6: The returns to local interactions by city size
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Figure E.7: The returns to local interactions by city inequality
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Figure E.8: Non-parametric estimation of the returns to local interactions
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Note: estimates produced from a non-parametric version of (19), log sit+1 = αt + β log sit + γq log sℓit
+ uit, for q the quartile of workers’ current

skills. The figure displays {γ̂q}q (blue circles) along with 10% confidence intervals, and the parametric fit produced by (19) (orange line).
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Figure E.9: The returns to local interactions by industry
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Note: estimates produced from an industry-specific version of (19), log sit+1 = αtι + βι log sit + βιlog sℓit
+ uit, for ι the industry of worker i.

The figure displays {γ̂ι}ι (orange circles) and the average effect (blue circle) along with 5% confidence intervals.

F Model Estimation

F.1 Clustering

Cities are clustered into 30 city types. The ten first types are the ten largest French cities. The twenty remaining
types are constructed by a k-mean algorithm so that there are five types within each French district (North-West,
North-East, South-West, and South-East). I include in the clustering algorithm variables that proxy for the geographic
primitives of the model: the coordinates of the city center to account for the migration costs, its average wage to
account for city’s TFP, and its population to account for its amenity.

Figure F.1 shows the mapping between cities to city types within each district. The grey areas are the ten largest
French cities. Each other color represents a city type within the district. While k-mean is not a spatial clustering
algorithm, including the latitude and longitude of the cities in the clustering variables is sufficient to generate city
types that are spatially contiguous. Table F.2 lists the number of cities by city type, the largest city in each type, the
average size, as well as the average wage.

How good is the spatial approximation generate by the k-mean algorithm? Figure F.2 plots the within city-type
sum of square residuals (SSR) as a fraction of the total SSR. With only 5 city types, the within city type is less than
a fifth of the total SSR. A parsimonious geographic representation of France is therefore able to capture most of the
variation of interest for the model.

F.2 Estimating equations

I derive here the equations that I use for the estimation of the model. First, in each city, the housing market must
clears. The housing supply is by assumption Hℓ = Hpδℓ , where the housing demand is HD

ℓ = αYℓ/pℓ. Equating the
two, solving for pℓ and taking logs yield (21).

I then turn to the migration cost equation (22). I derive the expression for young workers, but a similar expression
exists for the old. From (53), we know that

ny
lℓ(s)

ny
ll(s)

=
eϑ(sTℓ/Pℓ+B

y
ℓ
−κ

y
lℓ
+βOℓ(s))

eϑ(sTl/Pl+B
y
l
+βOl(s))

.
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after using κy
ll = 0. Similarly,

ny
ℓℓ(s)

ny
ℓl(s)

=
eϑ(sTℓ/Pℓ+B

y
ℓ
+βOℓ(s))

eϑ(sTl/Pl+B
y
l
−κ

y
ℓl
+βOl(s))

.

Dividing the first expression by the second, using the symmetry κy
lℓ = κy

ℓl, and integrating across young workers w.r.t.
dNy(s) yields (22).

Third and last, I derive the expression that I iterate on to obtain cities’ amenities. Here as well, I derive the
expression for young workers, but a similar expression exists for the old. From (53), we know that
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The left-hand side is the city ℓ employment share of young workers. The first-term is city ℓ’s relative amenities.
Finally, the integral on the right is a term that can be computed within the model. Normalizing By

P = Bo
P , cities’

amenities are recovered by iterating on this expression.

F.3 Migration heterogeneity

The model predicts substantial heterogeneity in migration probabilities across young workers. On average, an increase
in young skills by one standard deviation is associated with a migration probability 1.1 percentage points larger.
However, these elasticities differ across space. To see this, I estimate the reduced-form equation in the model

migℓ(s) = αℓ + βℓ log s+ uℓ(s), (64)

where migℓ(s) is the probability that a worker born in ℓ with skill s moves out of their birthplace, αℓ is a city fixed
effect, and βℓ is the city-specific migration elasticity. Figure F.7a and Figure F.7b displays the migration elasticities
for young and old workers. I find that young skilled workers born in productive cities are relatively more likely to stay
in their birthplaces, whereas young skilled workers born in low-TFP locations are more likely to move out. The same
pattern holds for old workers, but the migration elasticities are one order of magnitude smaller, suggesting that most
of the observed sorting patterns are determined at the onset of workers’ career.

F.4 Sensitivity

Figure F.8 and F.9 reports information to help assess the sources of identification in the indirect inference procedure.
Specifically, Figure F.8 plots the value of the targeted moments in the indirect inference procedure as a function of the
parameters. Each subplot is a given moment. Each line represents a particular parameter. The blue lines highlight
the parameters that are meant to be identified by the moment.

Figure F.8 confirms that all parameters are well identified locally. Each targeted moment is indeed a steep function
of the parameter they are meant to identify. For instance, the flattest relationship is between the wage variance
for old workers and the learning shocks dispersion. Even then, a 1% increase in σν leads to a 0.7% increase in the
targeted moment. Figure F.8 also shows that some parameters affect mainly one moment whereas others drive several
moments.

Figure F.9 complements the analysis of Figure F.8 by reporting the sensitivity measure of Andrews et al. (2017).
Intuitively, this metric is the inverse of the moment elasticities reported in Figure F.8. It quantifies how variation in
targeted moments would influence estimated parameter values. Theoretically, let hhh(θθθ) denote the correspondence
that maps the vector of parameters θθθ into the vector of targeted moments. Let JJJh denote the Jacobian matrix of
this function evaluated at the estimated parameters. Then, the sensitivity matrix is computed as ΛΛΛ = (JJJ ′

hJJJh)
−1JJJ ′

h.
Figure F.9 displays the absolute value of ΛΛΛ, and the sign of ΛΛΛ is reported in parenthesis. As in Figure F.8, the blue
bar highlights which moment is supposed to identify the specific parameter.

I draw two takeaways from Figure F.9. First, each moment is very informative for the parameters they are
meant to identify. Second, some moments are informative for several parameters. For instance, the wage variance
of old workers matters for the calibration of σs, σν and ϑ. While this sensitivity measure sheds further light on the
importance of the targeted moments for the calibration of the model, the magnitude of the sensitivity cannot however
be interpreted.
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F.5 Over-identification exercises: sorting in the data and in the model

F.5.1 TFP estimates

In the theory, the average wage of city ℓ may be high because the city is relatively productive, or because the workers
living there are particularly skilled. Specifically, the between-city wage gaps can be decomposed into a TFP gap and a
skill gap,

E[logWℓ]− E[logW ]︸ ︷︷ ︸
Between-city wage gap

= log Tℓ − E[log T ]︸ ︷︷ ︸
TFP gap

+E[logSℓ]︸ ︷︷ ︸
Skill gap

, (65)

where E[logS] = 0 by normalization. Local TFPs are calibrated to match the local average wages. However, neither
the TFP gaps nor the skill gaps are targeted in the estimation. In particular, for a given spatial distribution of average
wages, greater sorting implies smaller TFP gaps. Comparing the spatial TFP and skill gaps in the data and in the
model thus allows to quantify the extent to which the model captures sorting correctly, and with it, whether ϑ is
correctly calibrated.

Computing the wage decomposition (65) empirically requires to directly estimate local TFPs. Through the lens of
the model, the wage of worker i when employed in city ℓit is logwit = log Tℓit + log sit +uit, for uit some measurement
error. Hence, city TFP can be estimated as a city fixed effect upon observing workers’ skill sit.

I use workers’ occupation at the four-digit level, interacted with their tenure at the occupation, to proxy for their
skill. Proxying skills with occupations has the advantage that skills can evolve over time, much like in my model. In
particular, worker fixed effects, as in Card et al. (2023), cannot be used to estimate the productivity of a location in
the presence of spatial heterogeneity in learning. Measuring skill through worker fixed effect would indeed confound
the TFP estimates with the local learning opportunities since those fixed effects are constant over time.88

Figure F.10a and F.10b plots the TFP and skill gaps in the model against the between-city wage gaps. Cities with
a relatively high wage are more productive and attract a higher density of skilled workers. Combined, these two panels
show that skilled workers locate disproportionately in productive cities. Quantitatively, the spatial TFP differentials
explain 43% of the spatial wage gaps in the model (blue dotted line in Figure F.10a), while the between-city skill gaps
explain the remaining 57% of the variation (orange dotted line in Figure F.10b). In the data, I find that the TFP and
skill gaps explain respectively 42% and 58% of the spatial wage variation (grey lines in both panels).

F.5.2 Spatial sorting across the lifecycle

In the model, workers’ willingness to sort varies by skill and by age: young workers consider both the learning potential
of cities and the local wage, whereas old workers only sort according to the earnings differential. When migration
costs are small, the model predicts that the between-age difference in the number of workers in city ℓ with skill s is

log

(
ny
ℓ (s)

no
ℓ(s)

)
= ϑ (By

ℓ −Bo
ℓ )− log

(
N y(s)

N o(s)

)
+ ϑβOℓ(s), (66)

where N a(s) ≡
∑

ℓ e
ϑ[wℓ(s)+Ba

ℓ +βOa
ℓ (s)] is independent from ℓ. The last term captures the learning motive that is

present only for young workers. The shape of the learning technology affects whether young skilled workers place a
relatively higher learning value on productive cities than low skill workers. The dispersion in idiosyncratic preferences
modulates the between-age difference in willingness to sort. The spatial variations in young to old ratio can therefore
be used to validate jointly the estimation of the learning technology and the dispersion in idiosyncratic preferences.

Motivated by (66), I measure in the data the between-age difference in willingness to sort through the reduced-form
specification

log

(
Ny

ℓq

No
ℓq

)
= αℓ + βq + γqE[logWℓ] + eℓq, (67)

where Na
ℓq is the number of workers living in city ℓ with age a in wage quintile q, and eℓq is some residual. The

parameters αℓ and βq are a city and wage quintile fixed effects respectively. I proxy the quality of interactions in city
ℓ by the city log wage, and let workers in different wage quintile value those interactions differently, as captured by γq.
If γq > 0, young workers in quintile q are more sensitive to spatial variations in wages than old workers in the same

88Suppose sit = i so that the empirical wage model reads logwit = αℓit +βi+uit. City TFPs are then estimated off
within-worker time variation in wages for workers who switch locations: logwit+1− logwit = αℓit+1 −αℓit +uit+1−uit.
That is, city TFPs are estimated off wage growth variation for movers. Hence, these estimates conflate the proper city
productivity with estimates of the learning technology.
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quintile. If γq′ > γq, this between-age difference in willingness to sort is greater for workers in quintile q′ than q. The
parameters {γq} are identified up to a constant, and I normalize γ1 = 0 to focus on the difference in between-age
willingness to sort across skills. I estimate (67) in the data and in the model by OLS.

Figure F.10c presents the point estimates. In the data, the extra incentives of young workers to sort to high-wage
places is greater for skilled workers. The same pattern old in the model. Figure F.11 plots the model-implied spatial
differences in option values for low, middle and high-skill. The future opportunities offered by productive cities are
more attractive to skilled workers, which generates further sorting from them.89

F.6 Additional Tables and Figures

Table F.1: Estimated parameters

Parameter Value Moment Data Model

A. Externally calibrated

β 15-year discount factor 0.684 · ·

B. Model inversion

1− α Housing exp. share 0.200 Housing exp. share 0.200 0.200
{κa

ℓℓ′}ℓ,ℓ′ Migration cost · Migration flows (22) · ·
δ Housing price elasticity 7.473 Housing price ∼ exp.: constant (21) · ·
H Supply stock 7.2× 10−9 Housing price ∼ exp.: slope (21) · ·
g1 Learning technology 1.057 Wage growth ∼ wage (19) · ·
g2 Learning technology 0.327 Wage growth ∼ city wage (19) · ·
g12 Learning technology 0.393 Wage growth ∼ wage × city wage (19) · ·

C. Indirect inference

{Tℓ}ℓ City TFP · Average wage · ·
{Baℓ}a,ℓ City amenity · City size · ·
g0 Learning technology 0.400 Old / young wage 1.250 1.248
ϑ Taste shock dispersion 0.009 Local inequality ∼ local wage 0.29 0.28
µs
1 Mean young skill −0.200 Average skill 0.000 0.003

σs
1 Variance young skill 0.309 Variance young wage 0.139 0.141

σν Var. learning shock 0.310 Variance old wage 0.234 0.240

Parameter used in the quantitative model. The first two columns describe the parameter and the third column presents the value of the parameter.
The fourth column describes the moment used to estimate or calibrate the parameter. The fifth and sixth columns show the value of that moment in
the data and in the model. The migration costs are plotted in Figure F.3, the city TFP in Figure F.4a, and city amenities in Figure F.4b.

89When migration costs are positive, the option value of productive cities reflect both the learning opportunities
and the future migration costs. Figure F.11 plots the spatial differences in option values when interactions are not
segmented by cities (Section 5). In this case, skilled workers continue to place a higher option value on productive
cities to front-load the future migration costs, but the between-city differences are four times smaller.
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Table F.2: City types characteristics

Cluster District # cities Largest city Average size (thousands) Average wage

1 Paris 1 Paris 2800.6 30.03
2 SE 1 Lyon 609.8 23.38
3 NE 1 Roissy 443.0 22.50
4 NE 1 Saclay 414.1 27.32
5 SW 1 Toulouse 403.8 22.42
6 SW 1 Bordeaux 332.6 21.07
7 SE 1 Marseille 316.8 22.14
8 NW 1 Nantes 305.8 20.94
9 NE 1 Lille 258.4 22.06
10 NW 1 Rennes 218.4 20.54
11 NE 6 Strasbourg 131.9 20.67
12 NE 26 Troyes 32.64 18.61
13 NE 11 Orly 109.7 22.88
14 NE 27 Roubaix 58.53 19.46
15 NE 28 Besançon 32.47 19.57
16 NW 22 Challans 16.70 17.65

17 NW 21 Évreux 26.13 18.80
18 NW 6 Rouen 141.9 20.33
19 NW 15 Blois 28.05 18.86
20 NW 13 Angers 74.63 18.94
21 SW 4 Pau 65.64 19.31
22 SW 1 Mont-de-Marsan 29.40 17.29
23 SW 6 Poitiers 54.48 19.42
24 SW 20 Périgueux 25.87 18.22
25 SW 9 La Teste-de-Buch 17.74 17.26
26 SE 16 Limoges 34.67 18.08

27 SE 3 Saint-Étienne 127.5 19.56
28 SE 8 Grenoble 146.2 21.67
29 SE 19 Valence 52.71 20.31
30 SE 26 Nı̂mes 34.06 18.29

The tables report statistics on the city types used for the estimation of the quantitative model. The second column is the district
in which the city type belongs (see Figure F.1). The third column is the number of cities included in the city city type. For the
first ten types, there is a single city by definition. For the twenty remaining types, the number of cities per city type is determined
by the k-mean algorithm. The fourth column reports the largest city in the city type, the fifth column the average number of
employed workers (in thousands), and the sixth column the average wage.
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Figure F.1: City clustering

(a) North West (b) North East

(c) South West (d) South East

Note: each subplot is a French district. The grey areas are the ten largest French cities. The remaining commuting zones are subdivided into five
groups within each district. Each city cluster is represented by a different color on the map. See Table F.2 for a list of the clusters.

Figure F.2: City clustering residual
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Note: average within cluster sum of square residuals (SSR) relative to the total SSR against the number of cluster (per district) used in the k-mean
algorithm. The quantitative model features five city-types per district, as represented by the vertical dashed black line.
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Figure F.3: Estimated age-specific migration costs by city of origin
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Note: estimated age-specific migration costs by city of origin as a function of the distance between the city of origin and the destination. Each
subplot corresponds to a city of origin. The migration costs are estimated according to (22). The estimated costs are in utils, and they are reported
here in euros through κa

lℓPℓ. The blue circles and orange hexagons are the migration costs for young and old workers. Distance between two cities
computed as the Haversine distance. For city types that comprise more than one city, I define the coordinates of the city type as the coordinates of
the most populous city in that cluster. For reference, the average wage in the economy is 3,278e. The size of the circles is proportional to the size
of the city of destination.
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Figure F.4: Estimated city characteristics
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Note: panel (a) plots the estimated city TFP against the city average log wage. City TFP calibrated from (23). Panel (b) plots the estimated
age-specific amenity against the age-specific city employment share in log. The blue circles and orange hexagons represent the young and old
amenity. Amenities calibrated according to (63). The amenity value of Paris is normalized to zero for young and old and is omitted from panel (b)
for improved visual clarity. Amenities are converted into monetary value through Ba

ℓ Pℓ. The size of the circles is proportional to city size.

Figure F.5: Model fit
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Note: panel (a) plots the average wage in the data (x-axis) against the average wage in the model (y-axis). Panel (b) plots the age-city city
employment share for young (blue circles) and old workers (orange hexagons) in the data (x-axis) and in the model (y-axis). Panel (c) plots the rent
in the data (blue circle) and the rent in the model (blue line) against city income. The size of the circles are proportional to the size of the cities.
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Figure F.6: Spatial allocation of workers across the skill distribution
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(b) Skill ∈ P50-P90
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Note: three panels display the probability to work in a particular city if your skill is below the 50th percentile (a), between the 50th and 90th
percentile (b), or above the 90th percentile (c). The x-axis is cities’ relative log TFP, and the y-axis in log-scale. The size of the circles are
proportional to the size of the cities.

Figure F.7: Migration elasticities across space

(a) Young migration elasticity by birthplace
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Note: panel (a) and (b) display the migration elasticities for young and old workers as estimated by (64). Skills are normalized in the regression, so
that the elasticities correspond to the percentage point change in migration probability in response to an increase in skill by one standard deviation.
The size of the circles are proportional to the size of the cities.
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Figure F.8: Sensitivity of targeted moments to parameters
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Figure F.9: Sensitivity of parameters to targeted moments
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Note: figure reports the sensitivity measure of Andrews et al. (2017) in absolute value. The sign of the sensitivity is reported in parenthesis. Each
panel is a parameter calibrated in the indirect inference procedure. Each column is a targeted moment. The blue bar highlights which moment is
supposed to identify the parameter of interest.
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Figure F.10: Worker sorting in the model and in the data.
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Note: panel (a) displays the estimated city TFP. The grey solid line is computed as log T̂ℓ = α + β logwℓ, where log T̂ℓ are the location fixed effects
estimated from a projection of log wages on city and skill fixed effects. Panel (b) displays the average skill in city ℓ, E[log Sℓ]. The grey solid line is

computed as E[β̂s | ℓ] = α + β logwℓ, where β̂s are the skill fixed effects from the TWFE regression. Panel (c) plots the point estimates of {γq} in
(67) obtained from the model (blue circles) and from the data (grey hexagons).

Figure F.11: The option value of cities across the skill distribution
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(b) Young skill ∈ P50-P90
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(c) Young skill ≥ P90
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G The Tradeoff Between Human Capital and Inequality

Figure G.1: Skill growth by birthplace and initial skill
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Figure G.2: Relative skil growth by birthplace
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Figure G.3: The partial and general equilibrium effect of local interactions on skill growth
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Note: figure plots the change in average skill growth between the baseline equilibrium and the no segmentation equilibrium across the skill
distribution of young workers. The blue bars are the change in skill growth when interactions are no longer spatially segmented but the aggregate
skill distribution is held constant (partial equilibrium). The orange bars are in general equilibrium letting the aggregate skill distribution adjusts.

Figure G.4: Local interactions as a source of agglomeration

(a) Change in city size
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(b) Change in high-skill (top 10%) allocation
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Note: panel (a) displays the percentage change in city size between the baseline equilibrium and the equilibrium without segmented interaction
against the baseline city average wage. The blue line is the fitted line. Panel (b) plots the percentage change in the propensity of high-skill workers
(top 10% of the skill distribution) to work in a particular city. The orange line is the fitted line. The size of the markers is proportional to the
baseline city size in both panels.
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Figure G.5: The agglomeration effect of local interactions by age
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(b) Change in young share
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(c) Change in average wage
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H The Consequences of Spatial Policies

H.1 Welfare analysis

Consumption equivalence I first present how I derive the consumption-equivalent welfare metric of Section 6.3.
Let Vy

l (s, ζ, τττ) denote the lifetime utility of a young worker born in l with skill s when their lifetime consumption is
multiplied by ζ and they face a transfer function τττ ,

Vy
l (s, ζ, τττ) =

1

ϑ
log

∑
ℓ

e
ϑ

(
[sTℓ+τ

y
lℓ

(s)]ζ
Pℓ

+B
y
ℓ
−κ

y
lℓ
+βOℓ(s,ζ,τττ)

) ,

where90

Oℓ(s, ζ, τττ) =
1

ϑ

∫ ∫
log

∑
ℓ′

e
ϑ

(
[soT

ℓ′+τo
ℓℓ′ (s

o)]ζ
P
ℓ′

+Bo
ℓ′−κo

ℓℓ′

) dF

(
so

γ(s, sp)

)
πℓ(sp).

Let ζl(s) denote the consumption-equivalent change in welfare induced by the policy τττ for workers born in l with skill
ℓ. This consumption-equivalent measure is defined implicitly by Vy

l [s, ζℓ(s), 0] = Vy
l (s, 0, τττ). Intuitively, ζl(s) measure

by how much does the lifetime consumption of workers born in l with skill s needs to be multiplied in the baseline
equilbrium to make these workers indifferent between the policy τττ and the baseline economy.

This metric can only be used to quantify the welfare impact of the policy for workers with identical skill born
in the same location. In particular, it cannot be aggregated across skills or places. I therefore complement the
worker-level metric with a welfare measure for “representative” workers. Specifically, I measure the welfare impact
of the policy on group g as the change in lifetime consumption required to make the average worker in that group
indifferent between the two equilibrium,∫

Vy
ℓi
(si, ζg, 0)dF

g
i =

∫
Vy
ℓi
(si, 0, τττ)dF̃

g
i ,

where ζg is the welfare measure, and dF g
i denote the distribution of workers in group g for simplicity.91 This second

welfare metric is consistent with a utilitarian social welfare function that places equal weights on workers within group
g.92

90I use the change of variable eγ(s, sp) → so to derive the option value of city ℓ.
91Note that dF g

i and dF̃ g
i need not be the same as the policy is reallocating workers across space.

92Importantly however, no restrictions are placed on the social welfare function across groups. By making the
groups more granular, one therefore recovers the worker-level welfare metric.
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Welfare decomposition The total welfare impact of the policy can be decomposed into several margins. To
see this, note that the expected lifetime utility of a young worker be written as

Vy
l (s) = E

[
max

ℓ

{
sTℓ + τlℓ

Pℓ
− κy

lℓ + βOℓ(s) + εℓ

}]
=
∑
ℓ

(
sTℓ + τlℓ

Pℓ
− κy

lℓ + βOℓ(s)

)
ny
lℓ(s)

my
ℓ (s)

+ χy
l (s).

where χy
l (s) ≡ E [εyℓ | ℓ ≻ ℓ′ ∀ℓ′ ̸= ℓ] and I have subsumed the amenity value of cities into χy

l (s).
93 The first equality

follows from the definition of lifetime utility, and the second line from ny
lℓ(s)/m

y
l (s) = Pr[εℓ ≥ maxℓ′ ̸=ℓ εℓ′ + Ulℓ′(s)−

Ulℓ(s)]. Similarly, the expected option value of city ℓ can be rewritten

Oℓ(s) =

∫ ∫
E
[
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)
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)
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where the second line follows from the change of variable eγ(s, sp) → so and the definition

ωℓ(s
o, s) ≡

∫
πℓ(sp)

γ(s, sp)
f

(
so

γ(s, sp)

)
dsp.

Combined with the expression for young workers, we can therefore write lifetime utility as

Vy
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∑
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,

Lifetime utility can therefore be decomposed into four terms. First, the value of the transfers net of the lifetime
migration costs. Second, the present real income these workers have access to. Third, their expected future real
income. And third, their preferences for the location they live in. Hence, Vy

l (s) = V A
l (s) + V T

l (s) + V I
l (s) + V EI

l (s).
This utility decomposition can be used to decompose the welfare impact of the policy. The consumption-equivalent

welfare change can indeed be rewritten

0 = Vy
l [s, ζl(s)]− Vy⋆

l (s) = Vy
l [s, ζl(s)]− Vy

l (s) + Vy
l (s)− Vy⋆

l (s)

= Vy
l [s, ζl(s)]− Vy

l (s) +
(
V A
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l (s)
)
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l (s)
)
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V I
l (s)− V I⋆

l (s)
)
+
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V EI
l (s)− V EI⋆

l (s)
)
,

where the first equality is the definition of ζl(s), the second is an identity, and the third follows from the decomposition
I just derived. From there, we can define the four consumption-equivalent welfare metric:

Vy
l [s, ζ

A
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(
V A⋆
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l (s)
)
+ Vy
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V I⋆
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Vy
l [s, ζl(s)] = Vy⋆

l (s).

The term ζAl (s) measure the (consumption-equivalent) change in welfare coming solely from the idiosyncratic preferences
for the locations. The second term ζA+T

l (s) adds to the first term the net value of the transfer. The third term

93No closed-form solution exists for χy
l (s) but it can be obtained as utility residual.
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Figure H.1: Average take-up rate of moving vouchers by birthplace
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ζA+T+I
l (s) brings in the value of the present real income opportunities. Finally, ζl(s) adds the expected future lifetime
opportunities and corresponds to the total change in welfare. These four metrics are not additive but allow to measure
the relative importance of each term.

Figure H.5 presents this welfare decomposition separately for treated workers, non-treated workers born outside
of Paris, Lyon and Toulouse, and non-treated workers born in those three cities. The welfare impact of the policy on
the treated is mainly explained by two offsetting forces. On the one hand, workers born in the treated locations that
were choosing to stay there in the baseline equilibrium had on average strong preferences for these cities. On average,
the policy is therefore reallocating treated workers to cities they dislike, which reduces their lifetime utility. On the
other hand, the policy improves their future real income opportunities by increasing their lifetime human capital. In
net, the human capital channel dominates.94

To understand the welfare impact of the policy on the non-treated, recall from Proposition 5 that local interactions
engender two externalities. First, a pulling externality: the concentration of skilled workers in a few cities requires
many workers to forego their idiosyncratic spatial preferences. Second, a teaching externality: in the presence of
strong within-skill complementarities, the economy features too few interactions between skilled workers. The voucher
policy decreases the density of skilled workers in productive cities, and in doing so, mitigates the pulling externality
while amplifying the teaching externality. Holding constant the human capital of non-treated workers, these workers
would therefore also gain from the policy. However, in general equilibrium, the policy depresses their future income,
which, together with the tax they have to pay to finance the policy, triggers welfare losses.

H.2 Additional Figures

94Treated workers also experience welfare gains from the direct income effect of the subsidy.
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Figure H.2: The role of complementarities in shaping the learning costs of the voucher policy
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Figure H.3: The consequences of moving vouchers by skill and birthplace

(a) Policy take-up rate
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(b) Change in expected skill
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Figure H.4: The consequences of the voucher policy on local interactions
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(b) Change in average skill growth by workplace
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Figure H.5: Welfare decomposition of the moving voucher policy by birthplace
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Figure H.6: The consequences of the moving voucher policy across skills and birthplaces
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